Skip to main content

Self-supervised Pre-training for Nuclei Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

The accurate segmentation of nuclei is crucial for cancer diagnosis and further clinical treatments. For semantic segmentation of nuclei, Vision Transformers (VT) have the potentiality to outperform Convolutional Neural Network (CNN) based models due to their ability to model long-range dependencies (i.e., global context). Usually, VT and CNN models are pre-trained with large-scale natural image dataset (i.e., ImageNet) in fully-supervised manner. However, pre-training nuclei segmentation models with ImageNet is not much helpful because of morphological and textural differences between natural image domain and medical image domain. Also, ImageNet-like large-scale annotated histology dataset rarely exists in medical image domain. In this paper, we propose a novel region-level Self-Supervised Learning (SSL) approach and corresponding triplet loss for pre-training semantic nuclei segmentation model with unannotated histology images extracted from Whole Slide Images (WSI). Our proposed region-level SSL is based on the observation that, non-background (i.e., nuclei) patches of an input image are difficult to predict from surrounding neighbor patches, and vice versa. We empirically demonstrate the superiority of our proposed SSL incorporated VT model on two public nuclei segmentation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atito, S., Awais, M., Kittler, J.: Sit: self-supervised vision transformer. arXiv preprint arXiv:2104.03602 (2021)

  2. Carion, N., et al.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

  3. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)

  5. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  6. Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  7. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: Resunet-A: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogram. Rem. Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  11. Han, K., et al.: A survey on visual transformer. arXiv preprint arXiv:2012.12556 (2020)

  12. Haq, M.M., Huang, J.: Adversarial domain adaptation for cell segmentation. In: Medical Imaging with Deep Learning, pp. 277–287. PMLR (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Google Scholar 

  15. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  16. Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., Nadai, M.: Efficient training of visual transformers with small datasets. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Mahmood, F., et al.: Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 39(11), 3257–3267 (2019)

    Google Scholar 

  19. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)

    Article  Google Scholar 

  20. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  22. Sahasrabudhe, M., et al.: Self-supervised nuclei segmentation in histopathological images using attention. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 393–402. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_38

  23. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  25. Wang, X., et al.: TransPath: transformer-based self-supervised learning for histopathological image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 186–195. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_18

  26. Xie, E., Wang, W., Wang, W., Ding, M., Shen, C., Luo, P.: Segmenting transparent objects in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 696–711. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_41

  27. Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: Instance-aware self-supervised learning for nuclei segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 341–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_33

  28. Xu, Y., et al.: Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics 18(1), 1–17 (2017)

    Google Scholar 

  29. Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15671–15680 (2022)

    Google Scholar 

  30. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  31. Zhou, Z., Rahman S., Md Mahfuzur, Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

Download references

Acknowledgments

This work was partially supported by the NSF CAREER grant IIS-1553687 and Cancer Prevention and Research Institute of Texas (CPRIT) award (RP190107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Minhazul Haq .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 406 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haq, M.M., Huang, J. (2022). Self-supervised Pre-training for Nuclei Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics