Skip to main content

Uncertainty-aware Cascade Network for Ultrasound Image Segmentation with Ambiguous Boundary

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Ultrasound image segmentation plays an essential role in automatic disease diagnosis. However, to achieve precise ultrasound segmentation is still a challenge caused by the ambiguous lesion boundary and imaging artifacts such as speckles and shadowing noise. Considering that the pixels with high uncertainty generally distributing in the boundary regions of prediction maps, are likely to overlap with the confused regions of ultrasound, we proposed an uncertainty-aware cascade network. Our network uses the confidence map to evaluate the uncertainty of each pixel to enhance the segmentation of ambiguous boundary. On the one hand, the confidence map fuses with the ultrasound features and predicted mask using the adaptive fusion module (AFM) which enriches the context features from different modalities. In addition, the uncertainty attention module (UAM) is proposed based on the confidence map. This module focuses on the influential features with cross attention constrained by the uncertainty of pixels which can extract the localized features of confused ultrasound regions. On the other hand, the recurrent edge correction module (RECM) further improves the segmentation of ambiguous boundary. This module increases the weights of confident features neighboring the uncertainty boundaries in order to refine the predictions of edge pixels with low confidence. We evaluated the proposed method on three public ultrasound datasets and the segmentation results show that our method achieved higher Dice scores and lower Hausdorff distance with more precise boundary details compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary IoU: improving object-centric image segmentation evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15334–15342 (2021)

    Google Scholar 

  2. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. arXiv preprint (2021). https://doi.org/10.48550/arXiv.2112.01527

  3. Hatamizadeh, A., Terzopoulos, D., Myronenko, A.: End-to-end boundary aware networks for medical image segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 187–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_22

    Chapter  Google Scholar 

  4. van den Heuvel, T.L., de Bruijn, D., de Korte, C.L., Ginneken, B.V.: Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE 13(8), e0200412 (2018)

    Article  Google Scholar 

  5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  6. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020)

    Google Scholar 

  7. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  8. Li, H., et al.: CR-UNET: a composite network for ovary and follicle segmentation in ultrasound images. IEEE J. Biomed. Health Inform. 24(4), 974–983 (2019)

    Article  Google Scholar 

  9. Li, L., Lian, S., Luo, Z., Li, S., Wang, B., Li, S.: Learning consistency- and discrepancy-context for 2D organ segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 261–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_25

    Chapter  Google Scholar 

  10. Li, S., Chen, Y., Yang, S., Luo, W.: Cascade dense-unet for prostate segmentation in MR images. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019. LNCS, vol. 11643, pp. 481–490. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_46

    Chapter  Google Scholar 

  11. Moradi, S., et al.: MFP-UNET: a novel deep learning based approach for left ventricle segmentation in echocardiography. Physica Medica 67, 58–69 (2019)

    Article  Google Scholar 

  12. Nguyen, T.-C., Nguyen, T.-P., Diep, G.-H., Tran-Dinh, A.-H., Nguyen, T.V., Tran, M.-T.: CCBANet: cascading context and balancing attention for polyp segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 633–643. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_60

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Shahroudnejad, A., et al.: TUN-Det: a novel network for thyroid ultrasound nodule detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 656–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_62

    Chapter  Google Scholar 

  15. Tang, C., Chen, H., Li, X., Li, J., Zhang, Z., Hu, X.: Look closer to segment better: boundary patch refinement for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13926–13935 (2021)

    Google Scholar 

  16. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_20

    Chapter  Google Scholar 

  17. Wang, K., Liang, S., Zhang, Yu.: Residual feedback network for breast lesion segmentation in ultrasound image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 471–481. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_45

    Chapter  Google Scholar 

  18. Wang, Z.: Deep learning in medical ultrasound image segmentation: a review. arXiv preprint arXiv:2002.07703 (2020)

  19. Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., Carson, P.L.: Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91, 1–9 (2019)

    Article  Google Scholar 

  20. Yuan, Y., Xie, J., Chen, X., Wang, J.: SegFix: model-agnostic boundary refinement for segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 489–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_29

    Chapter  Google Scholar 

  21. Zhang, Y., et al.: Multi-phase liver tumor segmentation with spatial aggregation and uncertain region inpainting. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 68–77. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_7

    Chapter  Google Scholar 

  22. Zhou, J., Jia, X., Ni, D.: Thyroid nodule segmentation and classification in ultrasound images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2020). https://doi.org/10.5281/zenodo.3715942

  23. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge supports from National Nature Science Foundation of China grants (U20A20389, 61901214, 82027807), China Postdoctoral Science Foundation (2021T140322, 2020M671484), Jiangsu Planned Projects for Postdoctoral Research Funds (2020Z024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 4455 KB)

Supplementary material 3 (mp4 6930 KB)

Supplementary material 1 (pdf 446 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Y., Liao, H., Zhang, D., Chen, F. (2022). Uncertainty-aware Cascade Network for Ultrasound Image Segmentation with Ambiguous Boundary. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics