Skip to main content

Semi-parametric Approach to Random Forests for High-Dimensional Bayesian Optimisation

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Abstract

Calibration of simulation models and hyperparameter optimisation of machine learning and deep learning methods are computationally demanding optimisation problems, for which many state-of-the-art optimisation methods are adopted and applied in various studies. However, their performances come to a test when the parameter optimisation problems exhibit high-dimensional spaces and expensive evaluation of models’ or methods’ settings. Population-based (evolutionary) methods work well for the former but not suitable for expensive evaluation functions. On the opposite, Bayesian optimisation eliminates the necessity of frequent simulations to find the global optima. However, the computational demand rises significantly as the number of parameters increases. Bayesian optimisation with random forests has overcome issues of its state-of-the-art counterparts. Still, due to the non-parametric output, it fails to utilise the capabilities of available acquisition functions. We propose a semi-parametric approach to overcome such limitations to random forests by identifying a mixture of parametric components in their outcomes. The proposed approach is evaluated empirically on four optimisation benchmark functions with varying dimensionality, confirming the improvement in guiding the search process. Finally, in terms of running time, it scales linearly with respect to the dimensionality of the search space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code: https://tinyurl.com/2xtsaaut.

References

  1. An, Z., Nott, D.J., Drovandi, C.: Robust Bayesian synthetic likelihood via a semi-parametric approach. Stat. Comput. 30(3), 543–557 (2020)

    Google Scholar 

  2. Aushev, A., Pesonen, H., Heinonen, M., Corander, J., Kaski, S.: Likelihood-free inference with deep Gaussian processes. arXiv preprint arXiv:2006.10571 (2020)

  3. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, USA (1996)

    Book  MATH  Google Scholar 

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Blum, M., Nunes, M., Prangle, D., et al.: Comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28(2), 189–208 (2013)

    Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Chen, B., Castro, R., Krause, A.: Joint optimization and variable selection of high-dimensional Gaussian processes. arXiv preprint arXiv:1206.6396 (2012)

  8. Day, N.: Estimating the components of a mixture of normal components. Biometrika 56(3), 463–474 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)

    Google Scholar 

  10. Eggensperger, K., et al.: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In: NIPS Workshop on BO in Theory and Practice (2013)

    Google Scholar 

  11. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: International Conference on Machine Learning, pp. 1437–1446 (2018)

    Google Scholar 

  12. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

    Chapter  Google Scholar 

  13. Friedman, J.H., Hall, P.: On bagging and nonlinear estimation. J. Stat. Plann. Infer. 137(3), 669–683 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutmann, M.U., Corander, J.: Bayesian optimization for likelihood-free inference of simulator-based statistical models. J. Mach. Learn. Res. 17(1), 1–47 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv:1604.00772 (2016)

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  17. Järvenpää, M., Gutmann, M.U., Pleska, A., Vehtari, A., Marttinen, P., et al.: Efficient acquisition rules for model-based approximate Bayesian computation. Bayesian Anal. 14(2), 595–622 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Järvenpää, M., Gutmann, M.U., Vehtari, A., Marttinen, P., et al.: Gaussian process modelling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria. Ann. Appl. Stat. 12(4), 2228–2251 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuzmanovski, V., Hollmén, J.: Composite surrogate for likelihood-free bayesian optimisation in high-dimensional settings of activity-based transportation models. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds.) IDA 2021. LNCS, vol. 12695, pp. 171–183. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74251-5_14

    Chapter  Google Scholar 

  20. Laguna, M., Marti, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Glob. Optim. 33(2), 235–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leclercq, F.: Bayesian optimization for likelihood-free cosmological inference. Phy. Rev. D 98(6) (2018)

    Google Scholar 

  22. Lintusaari, J., Gutmann, M., Dutta, R., Kaski, S., Corander, J.: Fundamentals and recent developments in approximate Bayesian computation. Syst. Biol. 66, e66–e82 (2017)

    Google Scholar 

  23. Locatelli, M. A Note on the Griewank Test Function. J. Glob. Optim. 25, 160–174 (2003). https://doi.org/10.1023/A:1021956306041

  24. Meinshausen, N.: Quantile regression forests. JMLR 7, 983–999 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Mockus, J.: On Bayesian Methods for Seeking the Extremum. In: Marchuk, G.I. (eds.) Optimization Techniques IFIP Technical Conference. LNCS. Springer, Heidelberg (1975). https://doi.org/10.1007/978-3-662-38527-2_55

  26. Oh, S., Seshadri, R., Azevedo, C., Ben-Akiva, M.E.: Demand calibration of multimodal microscopic traffic simulation using weighted discrete SPSA. Transp. Res. Rec. 2673(5), 503–514 (2019)

    Article  Google Scholar 

  27. Petrik, O., Adnan, M., Basak, K., Ben-Akiva, M.: Uncertainty analysis of an activity-based microsimulation model for Singapore. Future. Gener. Comput. Sys. 110, 350–363 (2018)

    Google Scholar 

  28. Raynal, L., Marin, J., Pudlo, P., Ribatet, M., Robert, C., Estoup, A.: ABC random forests for Bayesian parameter inference. Bioinformatics 35(10), 1720–1728 (2019)

    Google Scholar 

  29. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley (1981)

    Google Scholar 

  30. Sha, D., Ozbay, K., Ding, Y.: Applying Bayesian optimization for calibration of transportation simulation models. Transp. Res. Rec. 2674, 036119812093625 (2020)

    Google Scholar 

  31. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2015)

    Article  Google Scholar 

  32. Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Computation. CRC Press (2018)

    Google Scholar 

  33. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, M., Adams, R.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

    Google Scholar 

  34. Springenberg, J.T., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with robust Bayesian neural networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 4141–4149 (2016)

    Google Scholar 

  35. Titterington, D., Smith, A., Makov, U.: Statistical Analysis of Finite Mixture Distributions. Series in Probability and Mathematical Statistics. Wiley (1985)

    Google Scholar 

  36. Todorović, M., Gutmann, M., Corander, J., Rinke, P.: Bayesian inference of atomistic structure in functional materials. NPJ Comput. Mater. 5(1), 35 (2019)

    Google Scholar 

  37. Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and applications. arXiv preprint arXiv:2003.05689 (2020)

  38. Zhang, Y., Apley, D.W., Chen, W.: Bayesian optimization for materials design with mixed quantitative and qualitative variables. Sci. Rep. 10(1), 4924 (2020)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the European Commission through the H2020 project Finest Twins (grant No. 856602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Kuzmanovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuzmanovski, V., Hollmén, J. (2022). Semi-parametric Approach to Random Forests for High-Dimensional Bayesian Optimisation. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics