Skip to main content

Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis

  • Conference paper
  • First Online:
Intertwining Graphonomics with Human Movements (IGS 2022)

Abstract

Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://dag.cvc.uab.es/patientmonitoring/.

References

  1. Dobkin, B.H.: 60 - rehabilitation and recovery of the patient with stroke. In: Grotta, J.C., et al. (eds.) Stroke, 7th edn, pp. 879–887.e2. Elsevier, Philadelphia (2022)

    Google Scholar 

  2. Ballester, B., et al.: A critical time window for recovery extends beyond one-year post-stroke. J. Neurophysiol. 122, 350–357 (2019)

    Article  Google Scholar 

  3. Bosch, J., et al.: Functional abilities of an international post-stroke population: standard assessment of global everyday activities (SAGEA) scale. J. Stroke Cerebrovasc. Dis. 31(4), 106329 (2022)

    Article  Google Scholar 

  4. Stenum, J., Rossi, C., Roemmich, R.T.: Two-dimensional video-based analysis of human gait using pose estimation. PLoS Comput. Biol. 17(4), 1–26 (2021)

    Article  Google Scholar 

  5. van der Westhuizen, E., Kamper, H., Menon, R., Quinn, J., Niesler, T.: Feature learning for efficient ASR-free keyword spotting in low-resource languages. Comput. Speech Lang. 71, 101275 (2022). Query date: 2022-03-07 13:17:34

    Google Scholar 

  6. Giotis, A.: Keyword spotting in handwritten document images using supervised and unsupervised representations. National Documentation Centre (EKT) (2021). Query date: 2022-03-07 13:23:13

    Google Scholar 

  7. Pan, H., Xie, L., Wang, Z.: Spatio-temporal convolutional attention network for spotting macro- and micro-expression intervals. In: Proceedings of the 1st Workshop on Facial Micro-Expression: Advanced Techniques for Facial Expressions Generation and Spotting (2021). Query date: 2022-03-15 13:24:42

    Google Scholar 

  8. Dritsas, E., Trigka, M.: A methodology for extracting power-efficient and contrast enhanced RGB images. Sensors 22(4), 1461 (2022)

    Article  Google Scholar 

  9. Memmesheimer, R., Häring, S., Theisen, N., Paulus, D.: Skeleton-DML: deep metric learning for skeleton-based one-shot action recognition. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 837–845 (2022)

    Google Scholar 

  10. Zhou, C., Yang, L., Liao, H., Liang, B., Ye, X.: Ankle foot motion recognition based on wireless wearable sEMG and acceleration sensors for smart AFO. Sens. Actuators, A 331, 113025 (2021)

    Article  Google Scholar 

  11. Li, C., Liu, M., Cao, Z.: WiHF: gesture and user recognition with WiFi. IEEE Trans. Mob. Comput. 21(2), 757–768 (2022)

    Article  Google Scholar 

  12. Rahmani, H., Bennamoun, M., Ke, Q.: Human action recognition from various data modalities: a review (2021)

    Google Scholar 

  13. Chaabane, S.B., Hijji, M., Harrabi, R., Seddik, H.: Face recognition based on statistical features and SVM classifier. Multimed. Tools Appl. 81, 8767–8784 (2022). Query date: 2022-02-22 13:16:18

    Google Scholar 

  14. Malik, N.U.R., Abu Bakar, S.A.R., Sheikh, U.U.: Multiview human action recognition system based on OpenPose and KNN classifier. In: Mahyuddin, N.M., Mat Noor, N.R., Mat Sakim, H.A. (eds.) Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications. LNEE, vol. 829, pp. 890–895. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8129-5_136

    Chapter  Google Scholar 

  15. Khalid, H.-U.-R., Gorji, A., Bourdoux, A., Pollin, S., Sahli, H.: Multi-view CNN-LSTM architecture for radar-based human activity recognition. IEEE Access 10, 1 (2022). Query date: 2022-02-23 12:56:18

    Google Scholar 

  16. Zhu, Q., Chen, Z., Soh, Y.C.: A novel semisupervised deep learning method for human activity recognition. IEEE Trans. Ind. Inform. 15(7), 3821–3830 (2019)

    Article  Google Scholar 

  17. He, J.-Y., Xiao, W., Cheng, Z.-Q., Yuan, Z., Jiang, Y.-G.: DB-LSTM: densely-connected Bi-directional LSTM for human action recognition. Neurocomputing 444, 319–331 (2021)

    Article  Google Scholar 

  18. Gupta, N.: Human activity recognition in artificial intelligence framework: a narrative review. Artif. Intell. Rev. 55, 4755–4808 (2022)

    Article  Google Scholar 

  19. Refai, M.I.M.: Moving on: measuring movement remotely after stroke. Ph.D. thesis. University of Twente, Netherlands (2021)

    Google Scholar 

  20. Buma, F., Kordelaar, J., Raemaekers, M., van Wegen, E., Ramsey, N., Kwakkel, G.: Brain activation is related to smoothness of upper limb movements after stroke. Exp. Brain Res. 234, 07 (2016)

    Article  Google Scholar 

  21. Scheltinga, B.L.: Suitable metrics for upper limb movement smoothness during stroke recovery (2019)

    Google Scholar 

  22. Bigoni, M., et al.: Does kinematics add meaningful information to clinical assessment in post-stroke upper limb rehabilitation? A case report. J. Phys. Therapy Sci. 28, 2408–2413 (2016)

    Article  Google Scholar 

  23. Rohrer, B., et al.: Movement smoothness changes during stroke recovery. J. Neurosci.: Official J. Soc. Neurosci. 22, 8297–304 (2002)

    Google Scholar 

  24. Liebermann, D.G., Levin, M.F., McIntyre, J., Weiss, P.L., Berman, S.: Arm path fragmentation and spatiotemporal features of hand reaching in healthy subjects and stroke patients. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5242–5245. IEEE (2010)

    Google Scholar 

  25. Pila, O., Duret, C., Laborne, F.-X., Gracies, J.-M., Bayle, N., Hutin, E.: Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. J. Neuroeng. Rehabil. 14, 10 (2017)

    Article  Google Scholar 

  26. Rahman, H.A., Khor, K., Fai, Y., Su, E., Narayanan, L.: The potential of iRest in measuring the hand function performance of stroke patients. Bio-Med. Mater. Eng. 28, 105–116 (2017)

    Article  Google Scholar 

  27. Laczko, J., Scheidt, R., Simo, L., Piovesan, D.: Inter-joint coordination deficits revealed in the decomposition of endpoint jerk during goal-directed arm movement after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. PP, 1 (2017)

    Google Scholar 

  28. Irfan, M., et al.: Smoothness metrics for reaching performance after stroke. Part 1: which one to choose? J. NeuroEng. Rehabil. 18, 10 (2021)

    Google Scholar 

  29. Supratak, A., Guo, Y.: TinySleepNet: an efficient deep learning model for sleep stage scoring based on raw single-channel EEG. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 641–644 (2020)

    Google Scholar 

  30. Wang, X., Zhou, Y., Zhao, C.: Heart-rate analysis of healthy and insomnia groups with detrended fractal dimension feature in edge. Tsinghua Sci. Technol. 27(2), 325–332 (2022)

    Article  Google Scholar 

  31. Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A.C., Oberye, J.J.L.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000)

    Article  Google Scholar 

  32. Van Dam, J., Tanous, K., Werner, M., Gabbard, J.L.: Calculating and analyzing angular head jerk in augmented and virtual reality: effect of AR cue design on angular jerk. Appl. Sci. 11(21), 10082 (2021)

    Article  Google Scholar 

  33. Oliveira, S.M.S., et al.: The balance concept on unilateral vestibular hypofunction patients changes the balance and quality of life. Health Sci. J. 15(5), 1–5 (2021)

    Google Scholar 

  34. Schot, S.H.: Jerk: the time rate of change of acceleration. Am. J. Phys. 46, 1090–1094 (1978)

    Article  Google Scholar 

  35. Hayati, H., Eager, D., Pendrill, A.-M., Alberg, H.: Jerk within the context of science and engineering—A systematic review. Vibration 3(4), 371–409 (2020)

    Article  Google Scholar 

  36. Hostler, D., Schwob, J., Schlader, Z.J., Cavuoto, L.: Heat stress increases movement jerk during physical exertion. Front. Physiol. 12, 748981 (2021)

    Article  Google Scholar 

  37. Alpers, B.: On fast jerk–, acceleration– and velocity–restricted motion functions for online trajectory generation. Robotics 10(1), 25 (2021)

    Article  Google Scholar 

  38. Bensalah, A., Chen, J., Fornés, A., Carmona-Duarte, C., Lladós, J., Ferrer, M.Á.: Towards stroke patients’ upper-limb automatic motor assessment using smartwatches. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 476–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_36

    Chapter  Google Scholar 

  39. Nakazono, T., et al.: Reliability and validity of Japanese version of Fugl-Meyer assessment for the lower extremities. Top. Stroke Rehabil. 29, 1–8 (2021). PMID: 33724162

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the Spanish project RTI2018-095645-B-C21, the CERCA Program/Generalitat de Catalunya and the FI fellowship AGAUR 2020 FI-SDUR 00497 (with the support of the Secretaria d’Universitats i Recerca of the Generalitat de Catalunya and the Fons Social Europeu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Bensalah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bensalah, A., Fornés, A., Carmona-Duarte, C., Lladós, J. (2022). Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis. In: Carmona-Duarte, C., Diaz, M., Ferrer, M.A., Morales, A. (eds) Intertwining Graphonomics with Human Movements. IGS 2022. Lecture Notes in Computer Science, vol 13424. Springer, Cham. https://doi.org/10.1007/978-3-031-19745-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19745-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19744-4

  • Online ISBN: 978-3-031-19745-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics