Skip to main content

OneFace: One Threshold for All

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13672))

Included in the following conference series:

Abstract

Face recognition (FR) has witnessed remarkable progress with the surge of deep learning. Current FR evaluation protocols usually adopt different thresholds to calculate the True Accept Rate (TAR) under a pre-defined False Accept Rate (FAR) for different datasets. However, in practice, when the FR model is deployed on industry systems (e.g., hardware devices), only one fixed threshold is adopted for all scenarios to distinguish whether a face image pair belongs to the same identity. Therefore, current evaluation protocols using different thresholds for different datasets are not fully compatible with the practical evaluation scenarios with one fixed threshold, and it is critical to measure the performance of FR models by using one threshold for all datasets. In this paper, we rethink the limitations of existing evaluation protocols for FR and propose to evaluate the performance of FR models from a new perspective. Specifically, in our OneFace, we first propose the One-Threshold-for-All (OTA) evaluation protocol for FR, which utilizes one fixed threshold called as Calibration Threshold to measure the performance on different datasets. Then, to improve the performance of FR models under the OTA protocol, we propose the Threshold Consistency Penalty (TCP) to improve the consistency of the thresholds among multiple domains, which includes Implicit Domain Division (IDD) as well as Calibration and Domain Thresholds Estimation (CDTE). Extensive experimental results demonstrate the effectiveness of our method for FR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, X., et al.: Killing two birds with one stone: efficient and robust training of face recognition CNNs by partial FC. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4042–4051 (2022)

    Google Scholar 

  2. An, X., et al.: Partial FC: training 10 million identities on a single machine. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 1445–1449, October 2021

    Google Scholar 

  3. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  4. Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center arcface: boosting face recognition by large-scale noisy web faces. In: Proceedings of the IEEE Conference on European Conference on Computer Vision (2020)

    Google Scholar 

  5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  6. Deng, J., Guo, J., Yang, J., Lattas, A., Zafeiriou, S.: Variational prototype learning for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11906–11915, June 2021

    Google Scholar 

  7. Gong, S., Liu, X., Jain, A.K.: Jointly de-biasing face recognition and demographic attribute estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 330–347. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_20

    Chapter  Google Scholar 

  8. Gong, S., Liu, X., Jain, A.K.: Mitigating face recognition bias via group adaptive classifier. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3414–3424 (2021)

    Google Scholar 

  9. Grother, P.J., Ngan, M.L., Hanaoka, K.K., et al.: Ongoing face recognition vendor test (FRVT) part 3: demographic effects. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg (2019)

    Google Scholar 

  10. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Huang, Y., et al.: CurricularFace: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)

    Google Scholar 

  15. Karkkainen, K., Joo, J.: FairFace: face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1548–1558 (2021)

    Google Scholar 

  16. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  17. Kim, M., Jain, A.K., Liu, X.: AdaFace: quality adaptive margin for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18750–18759 (2022)

    Google Scholar 

  18. Kim, Y., Park, W., Roh, M.C., Shin, J.: GroupFace: learning latent groups and constructing group-based representations for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5621–5630 (2020)

    Google Scholar 

  19. Kim, Y., Park, W., Shin, J.: BroadFace: looking at tens of thousands of people at once for face recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 536–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_31

    Chapter  Google Scholar 

  20. Li, Z., et al.: Learning to auto weight: entirely data-driven and highly efficient weighting framework. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4788–4795 (2020)

    Google Scholar 

  21. Liu, C., et al.: Learning to learn across diverse data biases in deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4072–4082 (2022)

    Google Scholar 

  22. Liu, J., Qin, H., Wu, Y., Guo, J., Liang, D., Xu, K.: CoupleFace: relation matters for face recognition distillation. In: Proceedings of the European Conference on Computer Vision (2022)

    Google Scholar 

  23. Liu, J., Qin, H., Wu, Y., Liang, D.: AnchorFace: boosting tar@ far for practical face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  24. Liu, J., et al.: DAM: discrepancy alignment metric for face recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3814–3823 (2021)

    Google Scholar 

  25. Liu, J., Zhou, S., Wu, Y., Chen, K., Ouyang, W., Xu, D.: Block proposal neural architecture search. IEEE Trans. Image Process. 30, 15–25 (2020)

    Article  Google Scholar 

  26. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  27. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, vol. 2, p. 7 (2016)

    Google Scholar 

  28. Meng, Q., Zhao, S., Huang, Z., Zhou, F.: MagFace: a universal representation for face recognition and quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14234 (2021)

    Google Scholar 

  29. Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507 (2017)

  30. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)

    Google Scholar 

  33. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2892–2900 (2015)

    Google Scholar 

  34. Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6398–6407 (2020)

    Google Scholar 

  35. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  36. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  37. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)

    Article  Google Scholar 

  38. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

  39. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  40. Wang, M., Deng, W.: Deep face recognition: a survey. arXiv 2018. arXiv preprint arXiv:1804.06655 (2018)

  41. Wang, M., Deng, W.: Mitigating bias in face recognition using skewness-aware reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9322–9331 (2020)

    Google Scholar 

  42. Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: reducing racial bias by information maximization adaptation network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 692–702 (2019)

    Google Scholar 

  43. Wang, X., Zhang, S., Wang, S., Fu, T., Shi, H., Mei, T.: Mis-classified vector guided softmax loss for face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12241–12248 (2020)

    Google Scholar 

  44. Whitelam, C., et al.: IARPA Janus Benchmark-B face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 90–98 (2017)

    Google Scholar 

  45. Xu, X., et al.: Consistent instance false positive improves fairness in face recognition. In: CVPR, pp. 578–586 (2021)

    Google Scholar 

  46. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  47. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  48. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5409–5418 (2017)

    Google Scholar 

  49. Zhang, X., Zhao, R., Qiao, Y., Wang, X., Li, H.: AdaCos: adaptively scaling cosine logits for effectively learning deep face representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10823–10832 (2019)

    Google Scholar 

  50. Zhu, Z., et al.: WebFace260M: a benchmark unveiling the power of million-scale deep face recognition. In: CVPR, pp. 10492–10502, June 2021

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China under Grant 61932002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. et al. (2022). OneFace: One Threshold for All. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19775-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19774-1

  • Online ISBN: 978-3-031-19775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics