Skip to main content

PreTraM: Self-supervised Pre-training via Connecting Trajectory and Map

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13699))

Included in the following conference series:

Abstract

Deep learning has recently achieved significant progress in trajectory forecasting. However, the scarcity of trajectory data inhibits the data-hungry deep-learning models from learning good representations. While pre-training methods for representation learning exist in computer vision and natural language processing, they still require large-scale data. It is hard to replicate their success in trajectory forecasting due to the inadequate trajectory data (e.g., 34K samples in the nuScenes dataset). To work around the scarcity of trajectory data, we resort to another data modality closely related to trajectories—HD-maps, which is abundantly provided in existing datasets. In this paper, we propose PreTraM, a self-supervised Pre-training scheme via connecting Trajectories and Maps for trajectory forecasting. PreTraM consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps. On top of popular baselines such as AgentFormer and Trajectron++, PreTraM reduces their errors by 5.5% and 6.9% relatively on the nuScenes dataset. We show that PreTraM improves data efficiency and scales well with model size. Our code and pre-trained models will be released at https://github.com/chenfengxu714/PreTraM.

C. Xu and T. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  2. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  3. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  4. Cai, P., Wang, S., Wang, H., Liu, M.: Carl-lead: lidar-based end-to-end autonomous driving with contrastive deep reinforcement learning. arXiv preprint arXiv:2109.08473 (2021)

  5. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. In: CoRL (2019)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 22243–22255 (2020)

    Google Scholar 

  8. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  9. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE (2019)

    Google Scholar 

  10. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  11. Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned on lane-graph traversals. In: Conference on Robot Learning, pp. 203–212. PMLR (2022)

    Google Scholar 

  12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, June 2019. https://doi.org/10.18653/v1/N19-1423

  13. Gao, J., et al.: VectorNet: encoding HD maps and agent dynamics from vectorized representation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  14. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6894–6910. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.emnlp-main.552

  15. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Home: heatmap output for future motion estimation. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 500–507 (2021). https://doi.org/10.1109/ITSC48978.2021.9564944

  16. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: THOMAS: trajectory heatmap output with learned multi-agent sampling. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=QDdJhACYrlX

  17. Gu, J., Sun, C., Zhao, H.: DenseTNT: end-to-end trajectory prediction from dense goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303–15312 (2021)

    Google Scholar 

  18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  19. Laddha, A.G., Gautam, S., Palombo, S., Pandey, S., Vallespi-Gonzalez, C.: MVFuseNet: improving end-to-end object detection and motion forecasting through multi-view fusion of lidar data. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2859–2868 (2021)

    Google Scholar 

  20. Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before fuse: vision and language representation learning with momentum distillation. In: NeurIPS (2021)

    Google Scholar 

  21. Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32

    Chapter  Google Scholar 

  22. Ma, H., Sun, Y., Li, J., Tomizuka, M.: Multi-agent driving behavior prediction across different scenarios with self-supervised domain knowledge. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (2021)

    Google Scholar 

  23. Ma, Y.J., Inala, J.P., Jayaraman, D., Bastani, O.: Likelihood-based diverse sampling for trajectory forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13279–13288 (2021)

    Google Scholar 

  24. Ngiam, J., et al.: Scene transformer: a unified architecture for predicting future trajectories of multiple agents. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=Wm3EA5OlHsG

  25. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints. arXiv-1807 (2018)

    Google Scholar 

  26. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14074–14083 (2020)

    Google Scholar 

  27. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  28. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40

    Chapter  Google Scholar 

  29. Shah, M., et al.: LiRaNet: end-to-end trajectory prediction using spatio-temporal radar fusion. In: CoRL (2020)

    Google Scholar 

  30. Tang, C., Zhan, W., Tomizuka, M.: Exploring social posterior collapse in variational autoencoder for interaction modeling. Adv. Neural. Inf. Process. Syst. 34, 8481–8494 (2021)

    Google Scholar 

  31. Varadarajan, B., et al.: Multipath++: efficient information fusion and trajectory aggregation for behavior prediction. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7814–7821 (2022). https://doi.org/10.1109/ICRA46639.2022.9812107

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  33. Yuan, Y., Kitani, K.: DLow: diversifying latent flows for diverse human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 346–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_20

    Chapter  Google Scholar 

  34. Yuan, Y., Weng, X., Ou, Y., Kitani, K.: AgentFormer: agent-aware transformers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  35. Zhao, H., et al.: TNT: target-driven trajectory prediction. In: Kober, J., Ramos, F., Tomlin, C. (eds.) Proceedings of the 2020 Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 155, pp. 895–904. PMLR, 16–18 November 2021. https://proceedings.mlr.press/v155/zhao21b.html

Download references

Acknowledgements

We sincerely appreciate Boris Ivanovic and Rowan McAllister for providing help on the experiments related to Trajectron++. This work was sponsored by Google-BAIR Commons program. Google also provided a generous donation of cloud compute credits through the Google-BAIR Commons program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 183 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, C. et al. (2022). PreTraM: Self-supervised Pre-training via Connecting Trajectory and Map. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19842-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19841-0

  • Online ISBN: 978-3-031-19842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics