Skip to main content

Sparse Kernel Transfer Learning

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13599))

Included in the following conference series:

  • 509 Accesses

Abstract

Deep learning performs remarkably well in a supervised learning setting. For computer vision tasks, the standard architecture is a convolutional neural network containing several layers of convolution and pooling, followed by a fully connected layer with a softmax output layer. Due to advancements in algorithms and activations, random initialization of the weights of the network can be effectively trained through stochastic gradient descent. In the event that you have a smaller dataset, one can utilize a transfer learning technique of the network weights in order to achieve state-of-the-art accuracy in over-parameterized models.

We demonstrate that a transfer learning of a different kind yields better results over a randomized initialization of the network, and even over the standard transfer learning method in specific situations. In this paper, we describe sparse kernel transfer learning, a method that utilizes sparse coding and dictionary learning to pre-train the filters of a CNN. This pre-training is reminiscent of the unsupervised autoencoder training that used to be performed when stacking layers of a neural network. We argue that this dictionary transfer provides a better initialization, results in better classification, is more interpretable, and can even outperform the state-of-the-art models in transfer learning in certain datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  2. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. In: International Conference on Machine Learning, pp. 242–252. PMLR (2019)

    Google Scholar 

  3. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36. JMLR Workshop and Conference Proceedings (2012)

    Google Scholar 

  4. Chang, H., Han, J., Zhong, C., Snijders, A.M., Mao, J.H.: Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1182–1194 (2017)

    Article  Google Scholar 

  5. Chen, H., et al.: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 507–514. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_62

    Chapter  Google Scholar 

  6. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  7. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  8. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961 (2021)

  9. Field, D.J.: What is the goal of sensory coding? Neural Comput. 6(4), 559–601 (1994)

    Article  Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)

    Article  MATH  Google Scholar 

  15. Kim, E., Hannan, D., Kenyon, G.: Deep sparse coding for invariant multimodal halle berry neurons. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1111–1120 (2018)

    Google Scholar 

  16. Kim, E., Onweller, C., O’Brien, A., McCoy, K.: The interpretable dictionary in sparse coding. arXiv preprint arXiv:2011.11805 (2020)

  17. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

  18. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature Cell Biol. 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  19. Liu, M., Chen, X., Wang, X.: Latent fingerprint enhancement via multi-scale patch based sparse representation. IEEE Trans. Inf. Forensics Secur. 10(1), 6–15 (2014)

    Article  Google Scholar 

  20. Lundquist, S.Y.: Exploring the Potential of Sparse Coding for Machine Learning. Ph.D. thesis, Portland State University (2020)

    Google Scholar 

  21. Martens, J., et al.: Deep learning via hessian-free optimization. In: ICML, vol. 27, pp. 735–742 (2010)

    Google Scholar 

  22. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Misra, I., Maaten, L.V.D.: Self-supervised learning of pretext-invariant representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6707–6717 (2020)

    Google Scholar 

  24. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  25. Rozell, C., Johnson, D., Baraniuk, R., Olshausen, B.: Locally competitive algorithms for sparse approximation. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on, vol. 4, pp. IV-169. IEEE (2007)

    Google Scholar 

  26. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  27. Steed, R., Caliskan, A.: Image representations learned with unsupervised pre-training contain human-like biases. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 701–713 (2021)

    Google Scholar 

  28. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  29. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, E., Ha, T., Kenyon, G.T. (2022). Sparse Kernel Transfer Learning. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20716-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20715-0

  • Online ISBN: 978-3-031-20716-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics