Skip to main content

Flexible Scheduling of Transactional Memory on Trees

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2022)

Abstract

We study the efficiency of executing transactions in a distributed transactional memory system. The system is modeled as a wired network with the topology of a tree. Contrary to previous approaches, we allow the flexibility for both transactions and their requested objects to move simultaneously among the nodes in the tree. Given a batch of transactions and objects, the goal is to produce a schedule of executing the transactions that minimizes the cost of moving the transactions and the objects in the tree. We consider both techniques for accessing a remote object with respect to a transaction movement. In the first technique, instead of moving, transactions send control messages to remote nodes where the requested objects are gathered. In the second technique, the transactions migrate to the remote nodes where they execute. When all the transactions use a single object, we give an offline algorithm that produces optimal schedules for both techniques. For the general case of multiple objects per transaction, in the first technique, we obtain a schedule with a constant-factor approximation of optimal. In the second technique, with transactions migrating, we give a k factor approximation where k is the maximum number of objects per transaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf (2007)

    Google Scholar 

  2. Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B., Wollrath, A.: Jini Specification. Addison-Wesley Longman Publishing (1999)

    Google Scholar 

  3. Attiya, H., Gramoli, V., Milani, A.: Directory protocols for distributed transactional memory. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Foundations, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 367–391. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14720-8_17

    Chapter  Google Scholar 

  4. Bocchino Jr., R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large scale clusters. In: PPOPP, pp. 247–258. ACM (2008)

    Google Scholar 

  5. Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Time-communication impossibility results for distributed transactional memory. Distrib. Comput. 31(6), 471–487 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Dynamic scheduling in distributed transactional memory. In: IPDPS, pp. 874–883. IEEE (2020)

    Google Scholar 

  7. Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Fast scheduling in distributed transactional memory. Theory Comput. Syst. 65(2), 296–322 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Comer, D.E.: The Cloud Computing Book: The Future of Computing Explained. Chapman and Hall/CRC (2021)

    Google Scholar 

  9. Hendler, D., Naiman, A., Peluso, S., Quaglia, F., Romano, P., Suissa, A.: Exploiting locality in lease-based replicated transactional memory via task migration. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 121–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2_9

    Chapter  Google Scholar 

  10. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures. In: ISCA, pp. 289–300. ACM (1993)

    Google Scholar 

  11. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distrib. Comput. 20(3), 195–208 (2007)

    Article  MATH  Google Scholar 

  12. Hirve, S., Palmieri, R., Ravindran, B.: HiperTM: high performance, fault-tolerant transactional memory. Theoret. Comput. Sci. 688, 86–102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann Publishers, Burlington (2011)

    Google Scholar 

  14. Kim, J., Ravindran, B.: Scheduling transactions in replicated distributed software transactional memory. In: CCGrid, pp. 227–234. IEEE Computer Society (2013)

    Google Scholar 

  15. Kobus, T., Kokocinski, M., Wojciechowski, P.T.: Hybrid replication: state-machine-based and deferred-update replication schemes combined. In: ICDCS, pp. 286–296. IEEE Computer Society (2013)

    Google Scholar 

  16. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concurrency in a transactional memory cluster. In: PPOPP, pp. 198–208. ACM (2006)

    Google Scholar 

  17. Palmieri, R., Peluso, S., Ravindran, B.: Transaction execution models in partially replicated transactional memory: the case for data-flow and control-flow. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Foundations, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 341–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14720-8_16

    Chapter  Google Scholar 

  18. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.E.T.: When scalability meets consistency: genuine multiversion update-serializable partial data replication. In: ICDCS, pp. 455–465. IEEE Computer Society (2012)

    Google Scholar 

  19. Poudel, P., Sharma, G.: GraphTM: an efficient framework for supporting transactional memory in a distributed environment. In: ICDCN, pp. 11:1–11:10. ACM (2020)

    Google Scholar 

  20. Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic live adaptation of virtual computational environments in a multi-domain infrastructure. In: ICAC, pp. 5–14. IEEE Computer Society (2006)

    Google Scholar 

  21. Saad, M.M., Ravindran, B.: HyFlow: a high performance distributed software transactional memory framework. In: HPDC, pp. 265–266. ACM (2011)

    Google Scholar 

  22. Saad, M.M., Ravindran, B.: Snake: control flow distributed software transactional memory. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 238–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3_19

    Chapter  Google Scholar 

  23. Sharma, G., Busch, C.: Distributed transactional memory for general networks. Distrib. Comput. 27(5), 329–362 (2014). https://doi.org/10.1007/s00446-014-0214-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharma, G., Busch, C.: A load balanced directory for distributed shared memory objects. J. Parallel Distrib. Comput. 78, 6–24 (2015)

    Article  Google Scholar 

  25. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2), 99–116 (1997)

    Article  MATH  Google Scholar 

  26. Siek, K., Wojciechowski, P.T.: Atomic RMI: a distributed transactional memory framework. Int. J. Parallel Prog. 44(3), 598–619 (2016)

    Article  Google Scholar 

  27. Tilevich, E., Smaragdakis, Y.: J-Orchestra: automatic java application partitioning. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 178–204. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7_8

    Chapter  Google Scholar 

  28. Zhang, B., Ravindran, B., Palmieri, R.: Distributed transactional contention management as the traveling salesman problem. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 54–67. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_6

    Chapter  Google Scholar 

Download references

Acknowledgements

G. Sharma was supported by National Science Foundation under Grant No. CAREER CNS-2045597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokarna Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Busch, C., Chlebus, B.S., Herlihy, M., Popovic, M., Poudel, P., Sharma, G. (2022). Flexible Scheduling of Transactional Memory on Trees. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2022. Lecture Notes in Computer Science, vol 13751. Springer, Cham. https://doi.org/10.1007/978-3-031-21017-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21017-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21016-7

  • Online ISBN: 978-3-031-21017-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics