Skip to main content

Evaluation of Transfer Learning to Improve Arrhythmia Classification for a Small ECG Database

  • Conference paper
  • First Online:
Advances in Artificial Intelligence – IBERAMIA 2022 (IBERAMIA 2022)

Abstract

Deep learning algorithms automatically extract features from ECG signals, eliminating the manual feature extraction step. Deep learning approaches require extensive data to be trained, and access to an ECG database with a large variety of cardiac rhythms is limited. Transfer learning is a possible solution to improve the results of cardiac rhythms classification in a small database. This work proposes a open-access robust 1D-CNN model to be trained with a public database containing cardiac rhythms with their annotations. This study explores transfer learning in a small database to improve arrhythmia classification tasks. Overall, the 1D-CNN model trained without TL achieved an average accuracy of 91.73 % and F1-score 67.18 %; meanwhile, the 1D-CNN model with TL achieved an average accuracy of 94.40 % and F1-score of 79.72 %. The F1-score has an overall improvement of 12.54 % over the baseline model for rhythm classification. Moreover, this method significantly improved the F1-score precision and recall, making the model trained with transfer learning more relevant and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Steenkiste, G., van Loon, G., Crevecoeur, G.: Transfer learning in ECG classification from human to horse using a novel parallel neural network architecture. Sci. Rep. 10, 186 (2020). https://doi.org/10.1038/s41598-019-57025-2

    Article  Google Scholar 

  2. Isin, A., Ozdalili, S.: Cardiac arrhythmia detection using deep learning. Proc. Comput. Sci. 120, 268–275 (2017). https://doi.org/10.1016/j.procs.2017.11.238, ISSN 1877–0509

  3. National Heart Lung and Blood Institute Web page. Arrhythmia. https://www.nhlbi.nih.gov/ health-topics/arrhythmia. (Accessed May 2022)

  4. Sansone, M., Fusco, R., Pepino, A., Sansone, C.: Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J Healthc Eng. 4(4), 465–504 (2013). PMID: 24287428. https://doi.org/10.1260/2040-2295.4.4.465

  5. Clifford, G.D., et al.: AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017. Comput. Cardiol 44 (2017) https://doi.org/10.22489/CinC.2017.065-469

  6. Clifford, G.D., et al.: AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge (2017). https://physionet.org/content/challenge-2017/1.0.0/. (Accessed May 2022)

  7. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 13, 101(23), E215–20 (2000). PMID: 10851218. https://doi.org/10.1161/01.cir.101.23.e215

  8. Ribeiro, A.H., Ribeiro, M.H., Paixão, G.M.M., et al.: Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11, 1760 (2020). https://doi.org/10.1038/s41467-020-15432-4

    Article  Google Scholar 

  9. Banerjee, S., Mitra, M.: Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63, 326–333 (2014)

    Article  Google Scholar 

  10. Mondéjar-Guerra, V., Novo, J., Rouco, J., Penedo, M.G., Ortega, M.: Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed. Signal Process. Contr. 47, 41–48 (2019). https://doi.org/10.1016/j.bspc.2018.08.007, ISSN 1746–8094

  11. Xu, S.S., Mak, M.-W., Cheung, C.-C.: Towards End-to-End ECG classification with raw signal extraction and deep neural networks. IEEE J. Biomed. Health Inform. 23(4), 1574–1584 (2019). https://doi.org/10.1109/JBHI.2018.2871510

    Article  Google Scholar 

  12. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016). https://doi.org/10.1109/TBME.2015.2468589

    Article  Google Scholar 

  13. Hao, C., Wibowo, S., Majmudar, M., Rajput, K.S.: Spectro-temporal feature based multi-channel convolutional neural network for ECG beat classification. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5642–5645 (2019). https://doi.org/10.1109/EMBC.2019.8857554

  14. Venton, J., Aston, P.J., Smith, N.A.S., Harris, P.M.: Signal to image to classification: transfer learning for ECG. In: 2020 11th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), pp. 1–2 (2020). https://doi.org/10.1109/ESGCO49734.2020.9158037

  15. Pal, A., Srivastva, R., Narain Singh, Y.: CardioNet: an efficient ecg arrhythmia classification system using transfer learning. Big Data Res. 26, 100271 (2021). https://doi.org/10.1016/j.bdr.2021.100271, ISSN 2214–5796

  16. Ghiasi, S., Abdollahpur, M., Madani, N., Kiani, K., Ghaffari, A.: Atrial fibrillation detection using feature based algorithm and deep convolutional neural network. Comput. Cardiol. (CinC) 2017, 1–4 (2017). https://doi.org/10.22489/CinC.2017.159-327

    Article  Google Scholar 

  17. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., et al.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019). https://doi.org/10.1038/s41591-018-0268-3

    Article  Google Scholar 

  18. Yıldırım, Ö., Pławiak, P., Tan, R.S., Acharya, U.R.: Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102, 411–420 (2018). https://doi.org/10.1016/j.comp.biomed.2018.09.009

  19. Jun, T.J., Nguyen, H.M., Kang, D., Kim, D., Kim, D., Kim, Y.: ECG arrhythmia classification using a 2-D convolutional neural network. ArXiv, abs/ arXiv: 1804.06812 (2018)

  20. Mousavi, S., Afghah, F., Razi, A., Acharya, U.R.: ECGNET: learning where to attend for detection of atrial fibrillation with deep visual attention. In: IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), vol. 2019, pp. 1–4 (2019). https://doi.org/10.1109/BHI.2019.8834637

  21. Zihlmann, M., Perekrestenko, D., Tschannen, M.: Convolutional Recurrent Neural Networks for Electrocardiogram Classification, arXiv:1710.06122 (2018)

  22. Ferreira, D., Silva, S., Abelha, A., Machado, J.: Recommendation system using autoencoders. Appli. Sci. 10(16), 5510. 659 MDPI (2020). 660

    Google Scholar 

  23. Martins, B., Ferreira, D., Neto, C., Abelha, A., Machado, J.: Data Mining for Cardiovascular Disease Prediction. J. 661 Med, Syst. 45(1), 662 (2021)

    Google Scholar 

  24. Aqra, I., Abdul Ghani, N., Maple, C., Machado, J., Sohrabi Safa, N.: Incremental Algorithm for Association Rule Mining under 663 Dynamic Threshold. Appli. Sci. 9(24). MDPI (2019)

    Google Scholar 

  25. Weber, M., Auch, M., Doblander, C., Mandl, P., Jacobsen, H.: Transfer learning with time series data: a systematic mapping study. IEEE Access 9, 165409–165432 (2021). https://doi.org/10.1109/ACCESS.2021.3134628

    Article  Google Scholar 

  26. Sansone, M., Fusco, R., Pepino, A., Sansone, C.: Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J Healthc. Eng. 4(4), 465–504 (2013) PMID: 24287428. https://doi.org/10.1260/2040-2295.4.4.465

  27. Montenegro, L., Abreu, M., Fred, A., Machado, J.M.: Human-Assisted vs. deep learning feature extraction: an evaluation of ECG Features extraction methods for arrhythmia classification using machine learning. Appli. Sci. 12(15), 7404 (2022). https://doi.org/10.3390/app12157404

  28. Gajendran, M.K., Khan, M.Z., Khattak, M.A.K.: ECG classification using deep transfer learning. In: 2021 4th International Conference on Information and Computer Technologies (ICICT), pp. 1–5 (2021). https://doi.org/10.1109/ICICT52872.2021.00008

  29. Weimann, K., Conrad, T.O.F.: Transfer learning for ECG classification. Sci. Rep. 11, 5251 (2021). https://doi.org/10.1038/s41598-021-84374-8

    Article  Google Scholar 

Download references

Acknowledgements

Funding: This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020 and the project “Integrated and Innovative Solutions for the well-being of people in complex urban centers” within the Project Scope NORTE-01-0145-FEDER- 000086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Peixoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montenegro, L., Peixoto, H., Machado, J.M. (2022). Evaluation of Transfer Learning to Improve Arrhythmia Classification for a Small ECG Database. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22419-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22418-8

  • Online ISBN: 978-3-031-22419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics