Skip to main content

Robust Moving Target Defense Against Unknown Attacks: A Meta-reinforcement Learning Approach

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13727))

Included in the following conference series:

  • 363 Accesses

Abstract

Moving target defense (MTD) provides a systematic framework to achieving proactive defense in the presence of advanced and stealthy attacks. To obtain robust MTD in the face of unknown attack strategies, a promising approach is to model the sequential attacker-defender interactions as a two-player Markov game, and formulate the defender’s problem as finding the Stackelberg equilibrium (or a variant of it) with the defender and the leader and the attacker as the follower. To solve the game, however, existing approaches typically assume that the attacker type (including its physical, cognitive, and computational abilities and constraints) is known or is sampled from a known distribution. The former rarely holds in practice as the initial guess about the attacker type is often inaccurate, while the latter leads to suboptimal solutions even when there is no distribution shift between when the MTD policy is trained and when it is applied. On the other hand, it is often infeasible to collect enough samples covering various attack scenarios on the fly in security-sensitive domains. To address this dilemma, we propose a two-stage meta-reinforcement learning based MTD framework in this work. At the training stage, a meta-MTD policy is learned using experiences sampled from a set of possible attacks. At the test stage, the meta-policy is quickly adapted against a real attack using a small number of samples. We show that our two-stage MTD defense obtains superb performance in the face of uncertain/unknown attacker type and attack behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Shaer, E., Duan, Q., Jafarian, J.H.: Random host mutation for moving target defense. In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106, pp. 310–327. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36883-7_19

    Chapter  Google Scholar 

  2. Allen, L., Heriyanto, T., Ali, S.: Kali Linux-Assuring Security by Penetration Testing. Packt Publishing Ltd. (2014)

    Google Scholar 

  3. Basar, T.: Lecture notes on non-cooperative game theory (2010). https://www.hamilton.ie/ollie/Downloads/Game.pdf

  4. BaÅŸar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM (1998)

    Google Scholar 

  5. Booth, H., Rike, D., Witte, G.A., et al.: The national vulnerability database (NVD): overview (2013)

    Google Scholar 

  6. Bowers, K.D., Dijk, M.E.V., Juels, A., Oprea, A.M., Rivest, R.L., Triandopoulos, N.: Graph-based approach to deterring persistent security threats. US Patent 8813234 (2014)

    Google Scholar 

  7. Brockman, G., et al.: OpenAI gym. ArXiv abs/1606.01540 (2016)

    Google Scholar 

  8. Cho, J.H., et al.: Toward proactive, adaptive defense: a survey on moving target defense. IEEE Commun. Surv. Tutor. 22(1), 709–745 (2020)

    Article  Google Scholar 

  9. Derman, E., Mannor, S.: Distributional robustness and regularization in reinforcement learning. In: The Theoretical Foundations of Reinforcement Learning Workshop at ICML 2020 (2020)

    Google Scholar 

  10. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.: RL\(^2\): fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779 (2016)

  11. Eldosouky, A., Saad, W., Niyato, D.: Single controller stochastic games for optimized moving target defense. In: IEEE International Conference on Communications (ICC) (2016)

    Google Scholar 

  12. Fallah, A., Mokhtari, A., Ozdaglar, A.: Generalization of model-agnostic meta-learning algorithms: recurring and unseen tasks. In: NeurIPS (2021)

    Google Scholar 

  13. Feng, X., Zheng, Z., Mohapatra, P., Cansever, D.: A Stackelberg game and Markov modeling of moving target defense. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.) GameSec 2017. LNCS, vol. 10575, pp. 315–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7_17

    Chapter  MATH  Google Scholar 

  14. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning (ICML), pp. 1126–1135 (2017)

    Google Scholar 

  15. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: International Conference on Machine Learning (ICML), pp. 1587–1596 (2018)

    Google Scholar 

  16. Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A.: Bayesian reinforcement learning: a survey. Found. Trends Mach. Learn. 8(5–6), 359–492 (2015)

    Article  MATH  Google Scholar 

  17. Hu, J., Wellman, M.P.: Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 4, 1039–1069 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Huang, P., Xu, M., Fang, F., Zhao, D.: Robust reinforcement learning as a Stackelberg game via adaptively-regularized adversarial training. arXiv preprint arXiv:2202.09514 (2022)

  19. Jackson, T., et al.: Compiler-generated software diversity. In: Jajodia, S., Ghosh, A., Swarup, V., Wang, C., Wang, X. (eds.) Moving Target Defense. Advances in Information Security, vol. 54, pp. 77–98. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0977-9_4

    Chapter  Google Scholar 

  20. Jafarian, J.H., Al-Shaer, E., Duan, Q.: OpenFlow random host mutation: transparent moving target defense using software defined networking. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks (HotSDN), pp. 127–132 (2012)

    Google Scholar 

  21. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

    Book  Google Scholar 

  22. Könönen, V.: Asymmetric multiagent reinforcement learning. Web Intell. Agent Syst. Int. J. (WIAS) 2(2), 105–121 (2004)

    Google Scholar 

  23. Li, H., Shen, W., Zheng, Z.: Spatial-temporal moving target defense: a Markov Stackelberg game model. In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS) (2020)

    Google Scholar 

  24. Li, H., Zheng, Z.: Optimal timing of moving target defense: a Stackelberg game model. In: IEEE Military Communications Conference (MILCOM). IEEE (2019)

    Google Scholar 

  25. Luo, Y.B., Wang, B.S., Wang, X.F., Hu, X.F., Cai, G.L., Sun, H.: RPAH: random port and address hopping for thwarting internal and external adversaries. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 263–270. IEEE (2015)

    Google Scholar 

  26. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Secur. Priv. 4(6), 85–89 (2006)

    Article  Google Scholar 

  27. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  28. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 895–902 (2008)

    Google Scholar 

  29. Paulin, A.: Secure SQL server-enabling secure access to remote relational data. arXiv preprint arXiv:1201.1081 (2012)

  30. Peng, W., Li, F., Huang, C.T., Zou, X.: A moving-target defense strategy for cloud-based services with heterogeneous and dynamic attack surfaces. In: International Conference on Communications (ICC), pp. 804–809. IEEE (2014)

    Google Scholar 

  31. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res. (2021)

    Google Scholar 

  32. Saputro, N., Tonyali, S., Aydeger, A., Akkaya, K., Rahman, M.A., Uluagac, S.: A review of moving target defense mechanisms for internet of things applications. Model. Design Secure Internet Things 563–614 (2020)

    Google Scholar 

  33. Sengupta, S., Kambhampati, S.: Multi-agent reinforcement learning in bayesian Stackelberg Markov games for adaptive moving target defense. arXiv preprint arXiv:2007.10457 (2020)

  34. Sengupta, S., et al.: A game theoretic approach to strategy generation for moving target defense in web applications. In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 178–186 (2017)

    Google Scholar 

  35. Sharma, D.P., Kim, D.S., Yoon, S., Lim, H., Cho, J.H., Moore, T.J.: FRVM: flexible random virtual IP multiplexing in software-defined networks. In: IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 579–587. IEEE (2018)

    Google Scholar 

  36. Sinha, A., Nguyen, T.H., Kar, D., Brown, M., Tambe, M., Jiang, A.X.: From physical security to cybersecurity. J. Cybersecur. 1(1), 19–35 (2015)

    Google Scholar 

  37. von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies. CDAM Research Report LSE-CDAM-2004-01 (2004)

    Google Scholar 

  38. Taguinod, M., Doupé, A., Zhao, Z., Ahn, G.J.: Toward a moving target defense for web applications. In: 2015 IEEE International Conference on Information Reuse and Integration, pp. 510–517. IEEE (2015)

    Google Scholar 

  39. Thomas, S., Williams, L.: Using automated fix generation to secure SQL statements. In: International Workshop on Software Engineering for Secure Systems (SESS). IEEE (2007)

    Google Scholar 

  40. Thompson, M., Evans, N., Kisekka, V.: Multiple OS rotational environment an implemented moving target defense. In: The 7th International Symposium on Resilient Control Systems (ISRCS), pp. 1–6. IEEE (2014)

    Google Scholar 

  41. Vorobeychik, Y., Singh, S.: Computing Stackelberg equilibria in discounted stochastic games (corrected version). In: Twenty-Sixth Conference on Artificial Intelligence (AAAI) (2012)

    Google Scholar 

  42. Vu, Q.L., et al.: Stackelberg policy gradient: evaluating the performance of leaders and followers. In: ICLR 2022 Workshop on Gamification and Multiagent Solutions (2022)

    Google Scholar 

  43. Wang, J.X., et al.: Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 (2016)

  44. Weng, L.: Meta-learning: learning to learn fast. lilianweng.github.io (2018). https://lilianweng.github.io/posts/2018-11-30-meta-learning/

  45. Xie, Q., Chen, Y., Wang, Z., Yang, Z.: Learning zero-sum simultaneous-move Markov games using function approximation and correlated equilibrium. In: COLT (2020)

    Google Scholar 

  46. Zhang, Y., Li, M., Bai, K., Yu, M., Zang, W.: Incentive compatible moving target defense against VM-colocation attacks in clouds. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 388–399. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1_32

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been funded in part by NSF grant CNS-1816495. We thank the anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henger Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Zheng, Z. (2023). Robust Moving Target Defense Against Unknown Attacks: A Meta-reinforcement Learning Approach. In: Fang, F., Xu, H., Hayel, Y. (eds) Decision and Game Theory for Security. GameSec 2022. Lecture Notes in Computer Science, vol 13727. Springer, Cham. https://doi.org/10.1007/978-3-031-26369-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26369-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26368-2

  • Online ISBN: 978-3-031-26369-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics