Skip to main content

Context Abstraction to Improve Decentralized Machine Learning in Structured Sensing Environments

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13715))

  • 654 Accesses

Abstract

In Internet of Things applications, data generated from devices with different characteristics and located at different positions are embedded into different contexts. This poses major challenges for decentralized machine learning as the data distribution across these devices and locations requires consideration for the invariants that characterize them, e.g., in activity recognition applications, the acceleration recorded by hand device must be corrected by the invariant related to the movement of the hand relative to the body. In this article, we propose a new approach that abstracts the exact context surrounding data generators and improves the reconciliation process for decentralized machine learning. Local learners are trained to decompose the learned representations into (i) universal components shared among devices and locations and (ii) local components that capture the specific context of device and location dependencies. The explicit representation of the relative geometry of devices through the special Euclidean Group SE(3) imposes additional constraints that improve the decomposition process. Comprehensive experimental evaluations are carried out on sensor-based activity recognition datasets featuring multi-location and multi-device data collected in a structured sensing environment. Obtained results show the superiority of the proposed method compared with the advanced solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghajan, H., Cavallaro, A.: Multi-camera Networks: Principles and Applications. Academic Press (2009)

    Google Scholar 

  2. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. In: ICML, pp. 1247–1255. PMLR (2013)

    Google Scholar 

  3. Carollo, J., et al.: Relative phase measures of intersegmental coordination describe motor control impairments in children with cerebral palsy who exhibit stiff-knee gait. Clin. Biomech. 59, 40–46 (2018)

    Article  Google Scholar 

  4. Caselles-Dupré, et al.: Symmetry-based disentangled representation learning requires interaction with environments. In: NeurIPS, vol. 32, pp. 4606–4615 (2019)

    Google Scholar 

  5. Esteves, C., Xu, Y., Allen-Blanchette, C., Daniilidis, K.: Equivariant multi-view networks. In: IEEE/CVF ICCV, pp. 1568–1577 (2019)

    Google Scholar 

  6. Finzi, M., et al.: Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In: ICML, pp. 3165–3176 (2020)

    Google Scholar 

  7. Forman, G., Scholz, M.: Apples-to-apples in cross-validation studies. ACM SIGKDD 12(1), 49–57 (2010)

    Article  Google Scholar 

  8. Gjoreski, H., et al.: The university of Sussex-Huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE (2018)

    Google Scholar 

  9. Hamidi, M., Osmani, A.: Data generation process modeling for activity recognition. In: Dong, Y., Mladenić, D., Saunders, C. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12460, pp. 374–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67667-4_23

    Chapter  Google Scholar 

  10. Hamidi, M., Osmani, A.: Human activity recognition: a dynamic inductive bias selection perspective. Sensors 21(21), 7278 (2021)

    Article  Google Scholar 

  11. Hamidi, M., Osmani, A., Alizadeh, P.: A multi-view architecture for the SHL challenge. In: UbiComp-ISWC, pp. 317–322 (2020)

    Google Scholar 

  12. Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., et al.: Towards a definition of disentangled representations. arXiv:1812.02230 (2018)

  13. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  14. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.: The non-IID data quagmire of decentralized machine learning. In: ICML, pp. 4387–4398 (2020)

    Google Scholar 

  15. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv:1912.04977 (2019)

  16. Karimireddy, S.P., et al.: SCAFFOLD: stochastic controlled averaging for federated learning. In: ICML, pp. 5132–5143 (2020)

    Google Scholar 

  17. Khaled, A., Mishchenko, K., Richtárik, P.: Tighter theory for local SGD on identical and heterogeneous data. In: AISTATS, pp. 4519–4529 (2020)

    Google Scholar 

  18. Kingma, D., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)

  19. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. MLSys 2, 429–450 (2020)

    Google Scholar 

  20. Ma, H., Li, W., Zhang, X., Gao, S., Lu, S.: AttnSense: multi-level attention mechanism for multimodal human activity recognition. In: IJCAI, pp. 3109–3115 (2019)

    Google Scholar 

  21. Mathieu, E., Rainforth, T., Siddharth, N., Teh, Y.W.: Disentangling disentanglement in variational autoencoders. In: ICML, pp. 4402–4412 (2019)

    Google Scholar 

  22. McMahan, B., et al.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, pp. 1273–1282 (2017)

    Google Scholar 

  23. Melendez-Calderon, A., Shirota, C., Balasubramanian, S.: Estimating movement smoothness from inertial measurement units. bioRxiv (2020)

    Google Scholar 

  24. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  25. Osmani, A., Hamidi, M.: Reduction of the position bias via multi-level learning for activity recognition. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds.) PAKDD 2022. LNCS, pp. 289–302. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-05936-0_23

    Chapter  Google Scholar 

  26. Qian, H., et al.: Latent independent excitation for generalizable sensor-based cross-person activity recognition. In: AAAI, vol. 35, pp. 11921–11929 (2021)

    Google Scholar 

  27. Quessard, R., Barrett, T., Clements, W.: Learning disentangled representations and group structure of dynamical environments. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  28. Shoaib, M., Bosch, S., Incel, O.D., et al.: Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6), 10146–10176 (2014)

    Article  Google Scholar 

  29. Stisen, A., et al.: Smart devices are different: assessing and mitigatingmobile sensing heterogeneities for activity recognition. In: ACM SenSys, pp. 127–140 (2015)

    Google Scholar 

  30. Dinh, C.T., Tran, N., Nguyen, T.D.: Personalized federated learning with Moreau envelopes. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  31. Vapnik, V., Izmailov, R.: Complete statistical theory of learning: learning using statistical invariants. In: COPA, pp. 4–40. PMLR (2020)

    Google Scholar 

  32. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: IEEE CVPR, pp. 588–595 (2014)

    Google Scholar 

  33. Wu, C., Khalili, A.H., Aghajan, H.: Multiview activity recognition in smart homes with spatio-temporal features. In: ACM/IEEE ICDSC, pp. 142–149 (2010)

    Google Scholar 

  34. Yang, J.Y., et al.: Using acceleration measurements for activity recognition. Pattern Recogn. Lett. 29(16), 2213–2220 (2008)

    Article  Google Scholar 

  35. Yao, S., et al.: DeepSense: a unified deep learning framework for time-series mobile sensing data processing. In: WWW, pp. 351–360 (2017)

    Google Scholar 

  36. Yu, H., et al.: Parallel restarted SGD with faster convergence and less communication. In: AAAI, pp. 5693–5700 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aomar Osmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamidi, M., Osmani, A. (2023). Context Abstraction to Improve Decentralized Machine Learning in Structured Sensing Environments. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13715. Springer, Cham. https://doi.org/10.1007/978-3-031-26409-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26409-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26408-5

  • Online ISBN: 978-3-031-26409-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics