Skip to main content

Team-Imitate-Synchronize forĀ Solving Dec-POMDPs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13716))

  • 518 Accesses

Abstract

Multi-agent collaboration under partial observability is a difficult task. Multi-agent reinforcement learning (MARL) algorithms that do not leverage a model of the environment struggle with tasks that require sequences of collaborative actions, while Dec-POMDP algorithms that use such models to compute near-optimal policies, scale poorly. In this paper, we suggest the Team-Imitate-Synchronize (TIS) approach, a heuristic, model-based method for solving such problems. Our approach begins by solving the joint team problem, assuming that observations are shared. Then, for each agent we solve a single agent problem designed to imitate its behavior within the team plan. Finally, we adjust the single agent policies for better synchronization. Our experiments demonstrate that our method provides comparable solutions to Dec-POMDP solvers over small problems, while scaling to much larger problems, and provides collaborative plans that MARL algorithms are unable to identify.

Supported by ISF Grants 1651/19 and 1210/18, Ministry of Science and Technologyā€™s Grant #3-15626 and the Lynn and William Frankel Center for Computer Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our implementation uses the simulation function of the SARSOP solver. We precompute sample size based on concentration bounds that ensure that distribution over initial state will match the true belief state.

  2. 2.

    DICEPS, while not new, was recommended to us, independently, by two senior researchers as still being a state-of-the-art approximate solver.

References

  1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic controllers for pomdps and decentralized pomdps. JAAMAS 21(3), 293ā€“320 (2010)

    Google ScholarĀ 

  2. Bazinin, S., Shani, G.: Iterative planning for deterministic qdec-pomdps. In: GCAI-2018, 4th Global Conference on Artificial Intelligence, vol. 55, pp. 15ā€“28 (2018)

    Google ScholarĀ 

  3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Res. 27(4), 819ā€“840 (2002)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. J. Artif. Int. Res. 11(1), 1ā€“94 (1999)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Brafman, R.I., Shani, G., Zilberstein, S.: Qualitative planning under partial observability in multi-agent domains. In: AAAI 2013 (2013)

    Google ScholarĀ 

  6. Carlin, A., Zilberstein, S.: Value-based observation compression for dec-pomdps. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 501ā€“508 (2008)

    Google ScholarĀ 

  7. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function decomposition. J. AI Res. 13, 227ā€“303 (2000)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Hausknecht, M.J., Stone, P.: Deep recurrent q-learning for partially observable mdps. In: 2015 AAAI Fall Symposium, pp. 29ā€“37. AAAI Press (2015)

    Google ScholarĀ 

  9. Kurniawati, H., Hsu, D., Lee, W.S.: Sarsop: efficient point-based pomdp planning by approximating optimally reachable belief spaces. In: Proceedings Robotics: Science and Systems (2008)

    Google ScholarĀ 

  10. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized pomdps: towards efficient policy computation for multiagent settings. In: IJCAI 2003, pp. 705ā€“711 (2003)

    Google ScholarĀ 

  11. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized pomdps: towards efficient policy computation for multiagent settings. In: IJCAI, vol. 3, pp. 705ā€“711 (2003)

    Google ScholarĀ 

  12. Oliehoek, F., Kooij, J., Vlassis, N.: The cross-entropy method for policy search in decentralized pomdps. Informatica 32, 341ā€“357 (2008)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Oliehoek, F.A., Spaan, M.T.J., Amato, C., Whiteson, S.: Incremental clustering and expansion for faster optimal planning in decentralized POMDPs. JAIR 46, 449ā€“509 (2013)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Oliehoek, F.A., Spaan, M.T.J., Terwijn, B., Robbel, P., Messias, J.A.V.: The madp toolbox: an open source library for planning and learning in (multi-)agent systems. J. Mach. Learn. Res. 18(1), 3112ā€“3116 (2017)

    Google ScholarĀ 

  15. Oliehoek, F.A., Spaan, M.T.J., Whiteson, S., Vlassis, N.: Exploiting locality of interaction in factored dec-pomdps. In: AAMAS, pp. 517ā€“524 (2008)

    Google ScholarĀ 

  16. Rashid, T., Farquhar, G., Peng, B., Whiteson, S.: Weighted QMIX: expanding monotonic value function factorisation for deep multi-agent reinforcement learning. Adv. Neural Inf. Process. Syst. 33, 10199ā€“10210 (2020)

    Google ScholarĀ 

  17. Smith, T., Simmons, R.: Point-based pomdp algorithms: improved analysis and implementation. In: UAI, pp. 542ā€“549 (2005)

    Google ScholarĀ 

  18. Son, K., Kim, D., Kang, W.J., Hostallero, D., Yi, Y.: QTRAN: learning to factorize with transformation for cooperative multi-agent reinforcement learning. In: ICML, pp. 5887ā€“5896 (2019)

    Google ScholarĀ 

  19. Wu, F., Zilberstein, S., Jennings, N.R.: Monte-carlo expectation maximization for decentralized pomdps. In: IJCAI, pp. 397ā€“403 (2013)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen I. Brafman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdoo, E., Brafman, R.I., Shani, G., Soffair, N. (2023). Team-Imitate-Synchronize forĀ Solving Dec-POMDPs. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13716. Springer, Cham. https://doi.org/10.1007/978-3-031-26412-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26412-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26411-5

  • Online ISBN: 978-3-031-26412-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics