Skip to main content

Characterization of Additive Manufactured Structures for the Development of Foam-Replacement Cushions

  • Conference paper
  • First Online:
Innovative Product Development by Additive Manufacturing 2022 (IPDAM 2022)

Abstract

For an ergonomic and healthy sitting posture, the distribution of the seat load in the contact zone through a soft seat cushion is essential. Conventional polyurethane (PUR) foams have only a very limited ability to adapt the distribution of the seat load in the seat cushion to the individual person. In this paper, a potential analysis is conducted to show the extent to which a replacement model for PUR foams can be realized using thermoplastic polyurethane (TPU) materials in the fused-deposition modeling (FDM) process. Based on fundamental experiments and consideration of manufacturing restrictions, suitable structure families and types are investigated and characterized. The characterization is based on standards for foam testing. Grading and design parameters are presented for the use of the foam replacement model in cushioned units. This allows the replacement of PUR foam and also a customer-specific hardness grading in the context of a mass customization process chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Froböse, I., Sperlich, W.: Der DKV-report 2021 – Wie gesund lebt Deutschland, Deutsche Sporthochschule Köln (2021)

    Google Scholar 

  2. López-Valenciano, A., et al.: Changes in sedentary behaviour in European Union adults between 2002 and 2017. BMC Public Health 20 (2020). Article number: 1206. https://doi.org/10.1186/s12889-020-09293-1

  3. Mergl, C.: Entwicklung eines Verfahrens zur Optimierung des Sitzkomforts in Automobilsitzen. Technische Universität München (2006)

    Google Scholar 

  4. Miller, H.: The art and science of pressure distribution (2013). https://www.hermanmiller.com/research/categories/white-papers/the-art-and-science-of-pressure-distribution/. Accessed 20 June 2022

  5. Weißenborn, O., et al.: Deformation analysis of polymer foams under compression load using in situ computed tomography and finite element simulation methods (2016)

    Google Scholar 

  6. Paul, G., Lee, Y.J., Slattery, P.: Modelling of multilayered foams for universal seat design (2020). https://doi.org/10.3233/ATDE200030

  7. Schramm, B., et al.: Medizintechnische Anwendungen der additiven Fertigung. In: Richard, H., Schramm, B., Zipsner, T. (eds.) Additive Fertigung von Bauteilen und Strukturen, pp. 21–40. Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-17780-5_2

    Chapter  Google Scholar 

  8. Babamiri, B.B., et al.: Designing additively manufactured lattice structures based on deformation mechanisms. Addit. Manuf. 46, 102143 (2021). https://doi.org/10.1016/j.addma.2021.102143

    Article  Google Scholar 

  9. Aremu, A., et al.: A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Addit. Manuf. 13, 1–13 (2017)

    Google Scholar 

  10. Al-Ketan, O., Abu Al-Rub, R.K.: MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3(6) (2021). https://doi.org/10.1002/mdp2.205

  11. Gama, N.V., Ferreira, A., Barros-Timmons, A.: Polyurethane foams: past, present, and future. Materials 11(10), 1841 (2018). https://doi.org/10.3390/ma11101841

    Article  Google Scholar 

  12. Breitkopf, A.: Meistgenutzte 3D-Druck-Technologie im Jahr 2021 (2021). Stand: 12.08.2021. https://de.statista.com/statistik/daten/studie/760408/umfrage/meistgenutzte-3d-druck-technologie/. Accessed 21 June 2022

  13. Ashby, M.F., Mehl Medalist, R.F.: The mechanical properties of cellular solids. Metall. Trans. A 14(9), 1755–1769 (1983). https://doi.org/10.1007/BF02645546

    Article  Google Scholar 

  14. Gautam, R., Idapalapati, S.: Compressive properties of additively manufactured functionally graded Kagome lattice structure. Metals 9(5), 517 (2019). https://doi.org/10.3390/met9050517

    Article  Google Scholar 

  15. Maskery, I., et al.: Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer 152, 62–71 (2018). https://doi.org/10.1016/j.polymer.2017.11.049

    Article  Google Scholar 

  16. Maconachie, T., et al.: SLM lattice structures: properties, performance, applications and challenges. Mater. Des. 183, 108137 (2019). https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  17. Müller, P., Gembarski, P., Lachmayer, R.: Density-based topology optimization for a defined external state of stress in individualized endoprosthesis. Proc. Des. Soc. 2, 533–542 (2022). https://doi.org/10.1017/pds.2022.55

    Article  Google Scholar 

  18. Beloshenko, V., et al.: Mechanical properties of flexible TPU-based 3D printed lattice structures: role of lattice cut direction and architecture. Polymers 13(17), 2986 (2021). https://doi.org/10.3390/polym13172986

    Article  Google Scholar 

  19. Dong, G., Tessier, D., Zhao, Y.: Design of shoe soles using lattice structures fabricated by additive manufacturing. In: Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, no. 1, pp. 719–728 (2019). https://doi.org/10.1017/dsi.2019.76

  20. Maskery, I., et al.: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 670, 264–274 (2016). https://doi.org/10.1016/j.msea.2016.06.013

    Article  Google Scholar 

  21. Abusabir, A., Khan, M.A., Asif, M., Khan, K.A.: Effect of architected structural members on the viscoelastic response of 3D printed simple cubic lattice structures. Polymers 14(3), 618 (2022). https://doi.org/10.3390/polym14030618

    Article  Google Scholar 

  22. Nace, S., Tiernan, J., Holland, D.P., Annaidh, A.N.: A comparative analysis of the compression characteristics of a thermoplastic polyurethane 3D printed in four infill patterns for comfort applications. Rapid Prototyping J. (2021). https://doi.org/10.1108/rpj-07-2020-0155

  23. Yu, S., Sun, J., Bai, J.: Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater. Des. (2019). https://doi.org/10.1016/J.MATDES.2019.108021

  24. Lachmayer, R., Lippert, R.B.: Entwicklungsmethodik für die Additive Fertigung, 1st edn. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-662-59789-7

    Book  Google Scholar 

  25. Lee, K.Y., et al.: Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J. Orthod. 45(5), 217–225 (2015). https://doi.org/10.4041/kjod.2015.45.5.217

    Article  Google Scholar 

  26. DIN ISO 3386-1: Polymere Materialien, weich - elastische Schaumstoffe – Bestimmung der Druckspannungs - Verformungseigenschaften – Teil 1: Materialien mit geringen Dichten (2015)

    Google Scholar 

  27. VDI3405: Additive manufacturing processes: design rules for part production using material extrusion processes part 3.4 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Steinnagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinnagel, C., Bastimar, C., Gembarski, P.C., Plappert, S., Müller, P., Lachmayer, R. (2023). Characterization of Additive Manufactured Structures for the Development of Foam-Replacement Cushions. In: Lachmayer, R., Bode, B., Kaierle, S. (eds) Innovative Product Development by Additive Manufacturing 2022. IPDAM 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-27261-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27261-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27260-8

  • Online ISBN: 978-3-031-27261-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics