Skip to main content

A Self-Adaptive Approach to Exploit Topological Properties of Different GAs’ Crossover Operators

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13986))

Included in the following conference series:

  • 435 Accesses

Abstract

Evolutionary algorithms (EAs) are a family of optimization algorithms inspired by the Darwinian theory of evolution, and Genetic Algorithm (GA) is a popular technique among EAs. Similar to other EAs, common limitations of GAs have geometrical origins, like premature convergence, where the final population’s convex hull might not include the global optimum. Population diversity maintenance is a central idea to tackle this problem but is often performed through methods that constantly diminish the search space’s area. This work presents a self-adaptive approach, where the non-geometric crossover is strategically employed with geometric crossover to maintain diversity from a geometrical/topological perspective. To evaluate the performance of the proposed method, the experimental phase compares it against well-known diversity maintenance methods over well-known benchmarks. Experimental results clearly demonstrate the suitability of the proposed self-adaptive approach and the possibility of applying it to different types of crossover and EAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad, N., Ali, M., Liang, J., Qu, B., Suganthan, P., Definitions, P.: Evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Technical report (2016)

    Google Scholar 

  2. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation. Release 97(1), B1 (1997)

    Google Scholar 

  3. Castelli, M., Manzoni, L., Gonçalves, I., Vanneschi, L., Trujillo, L., Silva, S.: An analysis of geometric semantic crossover: a computational geometry approach. In: IJCCI (ECTA), pp. 201–208 (2016)

    Google Scholar 

  4. Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geometric semantic genetic programming. Genet. Program. Evolvable Mach. 17(1), 55–74 (2016)

    Article  Google Scholar 

  5. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

    Article  Google Scholar 

  6. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, vol. 4149. Lawrence Erlbaum, Hillsdale, NJ (1987)

    Google Scholar 

  7. Gupta, D., Ghafir, S.: An overview of methods maintaining diversity in genetic algorithms. Int. J. Emerg. Technol. Adv. Eng. 2(5), 56–60 (2012)

    Google Scholar 

  8. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  9. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Diversity improvement by non-geometric binary crossover in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 14(6), 985–998 (2010)

    Article  Google Scholar 

  10. Jassadapakorn, C., Chongstitvatana, P.: Self-adaptation mechanism to control the diversity of the population in genetic algorithm. arXiv preprint arXiv:1109.0085 (2011)

  11. Lim, S.M., Sultan, A.B.M., Sulaiman, M.N., Mustapha, A., Leong, K.Y.: Crossover and mutation operators of genetic algorithms. Int. J. Mach. Learn. Comput. 7(1), 9–12 (2017)

    Article  Google Scholar 

  12. Lin, W.Y., Lee, W.Y., Hong, T.P.: Adapting crossover and mutation rates in genetic algorithms. J. Inf. Sci. Eng. 19(5), 889–903 (2003)

    Google Scholar 

  13. Maan, V., Malik, A.: Genetic algorithm application on 3D pipe routing: a review. Recent Innov. Comput. 139–148 (2022)

    Google Scholar 

  14. McKnight, P.E., Najab, J.: Mann-Whitney u test. Corsini Encycl. Psychol. 1 (2010)

    Google Scholar 

  15. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D. thesis, Department of Computer Science, University of Essex, UK (2007)

    Google Scholar 

  16. Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algorithms, pp. 151–162 (2011)

    Google Scholar 

  17. Moraglio, A., Poli, R.: Inbreeding properties of geometric crossover and non-geometric recombinations. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_1

    Chapter  MATH  Google Scholar 

  18. Moraglio, A., Togelius, J., Silva, S.: Geometric differential evolution for combinatorial and programs spaces. Evol. Comput. 21(4), 591–624 (2013)

    Article  Google Scholar 

  19. Sharma, S., Kumar, V.: Application of genetic algorithms in healthcare: a review. Next Generation Healthcare Informatics, pp. 75–86 (2022)

    Google Scholar 

  20. Shimodaira, H.: DCGA: a diversity control oriented genetic algorithm. In: Second International Conference On Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 444–449 (1997). https://doi.org/10.1049/cp:19971221

  21. Shimodaira, H.: A diversity-control-oriented genetic algorithm (DCGA): performance in function optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, pp. 44–51 (2001). https://doi.org/10.1109/CEC.2001.934369

  22. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  23. Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)

    Article  Google Scholar 

  24. Vanneschi, L., Henriques, R., Castelli, M.: Multi-objective genetic algorithm with variable neighbourhood search for the electoral redistricting problem. Swarm Evol. Comput. 36, 37–51 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Pietropolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, J., Castelli, M., Manzoni, L., Pietropolli, G. (2023). A Self-Adaptive Approach to Exploit Topological Properties of Different GAs’ Crossover Operators. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds) Genetic Programming. EuroGP 2023. Lecture Notes in Computer Science, vol 13986. Springer, Cham. https://doi.org/10.1007/978-3-031-29573-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29573-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29572-0

  • Online ISBN: 978-3-031-29573-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics