Skip to main content

A Static Bi-dimensional Sample Selection for Federated Learning with Label Noise

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 1912 Accesses

Abstract

In real-world Federated learning(FL), client training data may contain label noise, which can harm the generalization performance of the global model. Most existing noisy label learning methods rely on sample selection strategies that treat small-loss samples as correctly labeled ones, and large-loss samples as mislabeled ones. However, large-loss samples may also be valuable hard samples with correct labels. Also, these sample selection strategies have an issue in FL setting: Moreover sample selection strategies require training two models simultaneously and are executed in every mini-batch, which increases the communication cost and client computation. In this paper, we propose an efficient multi-stage federated learning framework to tackle label noise. Firstly, we use self-supervision pre-training to extract category-independent features without using any labels. Secondly, we propose a federated static two-dimensional sample selection(FedSTSS) method, which uses category probability entropy and loss as separation metrics to identify samples. Notably, to improve the accuracy of recognition samples, we add a weight entropy minimization term to the cross-entropy loss function. Finally, we use a semi-supervised method to finetune the global model on identified clean samples and mislabeled samples. Extensive experiments on multiple synthetic and real-world noisy datasets demonstrate that our method outperforms the state-of-the-art methods.

Supported by the National Natural Science Foundation of China under Grant No. 62272180. The computation is completed in the HPC Platform of Huazhong University of Science and Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  2. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  5. Li, J., Socher, R., Hoi, S.C.: Dividemix: learning with noisy labels as semi-supervised learning (2020). arXiv preprint arXiv:2002.07394

  6. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  7. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  8. Tan, C., Xia, J., Wu, L., Li, S.Z.: Co-learning: learning from noisy labels with self-supervision. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1405–1413 (2021)

    Google Scholar 

  9. Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., Liu, Y.: Learning with noisy labels revisited: a study using real-world human annotations. In: International Conference on Learning Representations. ICLR (2022)

    Google Scholar 

  10. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2699 (2015)

    Google Scholar 

  11. Xu, J., Chen, Z., Quek, T.Q., Chong, K.F.E.: Fedcorr: multi-stage federated learning for label noise correction (2022). arXiv preprint arXiv:2204.04677

  12. Yang, M., Qian, H., Wang, X., Zhou, Y., Zhu, H.: Client selection for federated learning with label noise. IEEE Trans. Veh. Technol. 71(2), 2193–2197 (2021)

    Article  Google Scholar 

  13. Yang, S., Park, H., Byun, J., Kim, C.: Robust federated learning with noisy labels. IEEE Intell. Syst. 37(2), 35–43 (2022)

    Article  Google Scholar 

  14. Yao, Y., et al.: Jo-src: a contrastive approach for combating noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5192–5201 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rong, Q., Yuan, L., Li, G., Li, J., Zhang, L., Ding, X. (2023). A Static Bi-dimensional Sample Selection for Federated Learning with Label Noise. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics