Skip to main content

Search and Rescue on the Line

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2023)

Abstract

We propose and study a problem inspired by a common task in disaster, military, and other emergency scenarios: search and rescue. Suppose an object (victim, message, target, etc.) is at some unknown location on a path. Given one or more mobile agents, also at initially arbitrary locations on the path, the goal is to find and deliver the object to a predefined destination in as little time as possible. We study the problem for the one- and two-agent cases and consider scenarios where the object and agents are arbitrarily (adversarially, even) placed along a path of either known (and finite) or unknown (and potentially infinite) length. We also consider scenarios where the destination is either at the endpoint or in the middle of the path. We provide both deterministic and randomized online algorithms for each of these scenarios and prove bounds on their (expected) competitive ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bärtschi, A., Tschager, T.: Energy-efficient fast delivery by mobile agents. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 82–95. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_8

    Chapter  Google Scholar 

  2. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_15

    Chapter  Google Scholar 

  4. Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_18

    Chapter  Google Scholar 

  5. Carvalho, I.A., Erlebach, T., Papadopoulos, K.: On the fast delivery problem with one or two packages. J. Comput. Syst. Sci. 115, 246–263 (2021). https://doi.org/10.1016/j.jcss.2020.09.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Cenek, E.: Chases and escapes by Paul J. Nahin. ACM SIGACT News 40(3), 48–50 (2009). https://doi.org/10.1145/1620491.1620500

    Article  Google Scholar 

  7. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_36

    Chapter  Google Scholar 

  8. Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

  9. Clark, L., Galante, J., Krishnamachari, B., Psounis, K.: A queue-stabilizing framework for networked multi-robot exploration. IEEE Robot. Autom. Lett. 6(2), 2091–2098 (2021). https://doi.org/10.1109/LRA.2021.3061304

    Article  Google Scholar 

  10. Coleman, J., Kranakis, E., Krizanc, D., Ponce, O.M.: Message delivery in the plane by robots with different speeds. In: Johnen, C., Schiller, E.M., Schmid, S. (eds.) SSS 2021. LNCS, vol. 13046, pp. 305–319. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91081-5_20

    Chapter  Google Scholar 

  11. Coleman, J., Kranakis, E., Krizanc, D., Morales-Ponce, O.: The pony express communication problem. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol. 12757, pp. 208–222. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79987-8_15

    Chapter  Google Scholar 

  12. Coleman, J., Kranakis, E., Krizanc, D., Morales-Ponce, O.: Delivery to safety with two cooperating robots. CoRR abs/2210.04080 (2022). https://doi.org/10.48550/arXiv.2210.04080

  13. Coleman, J., Kranakis, E., Krizanc, D., Morales-Ponce, O.: Line search for an oblivious moving target. CoRR abs/2211.03686 (2022). https://doi.org/10.48550/arXiv.2211.03686

  14. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the lambertW function. Adv. Comput. Math. 5(1), 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  15. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication. Discret. Math. Theor. Comput. Sci. 22(4) (2020). http://dmtcs.episciences.org/6732

  16. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

  17. Czyzowicz, J., et al.: Group evacuation on a line by agents with different communication abilities. 212, 57:1–57:24 (2021). https://doi.org/10.4230/LIPIcs.ISAAC.2021.57

  18. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. Distrib. Comput. 32(6), 493–504 (2019). https://doi.org/10.1007/s00446-017-0296-0

  19. Devillez, H., Egressy, B., Fritsch, R., Wattenhofer, R.: Two-agent tree evacuation. In: Jurdziński, T., Schmid, S. (eds.) SIROCCO 2021. LNCS, vol. 12810, pp. 204–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79527-6_12

    Chapter  Google Scholar 

  20. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.: Collaborative search on the plane without communication. In: Kowalski, D., Panconesi, A. (eds.) ACM Symposium on Principles of Distributed Computing (PODC 2012), Funchal, Madeira, Portugal, 16–18 July 2012, pp. 77–86. ACM (2012). https://doi.org/10.1145/2332432.2332444

  21. Gal, S.: Search games. Wiley Encyclopedia of Operations Research and Management Science (2010)

    Google Scholar 

  22. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: wireless and face-to-face communication models. arXiv preprint arXiv:1611.10208 (2016)

  23. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk - wireless and face-to-face communication models. In: Liberatore, F., Parlier, G.H., Demange, M. (eds.) Proceedings of the 6th International Conference on Operations Research and Enterprise Systems (ICORES 2017), Porto, Portugal, 23–25 February 2017, pp. 15–26. SciTePress (2017). https://doi.org/10.5220/0006091600150026

  24. Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_11

    Chapter  Google Scholar 

  25. Kao, M., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. pp. 441–447 (1993). http://dl.acm.org/citation.cfm?id=313559.313848

  26. Kleinberg, J.M.: On-line search in a simple polygon. In: Sleator, D.D. (ed.) Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23–25 January 1994, Arlington, Virginia, USA, pp. 8–15. ACM/SIAM (1994). http://dl.acm.org/citation.cfm?id=314464.314473

  27. Queralta, J.P., et al.: Collaborative multi-robot search and rescue: planning, coordination, perception, and active vision. IEEE Access 8, 191617–191643 (2020). https://doi.org/10.1109/ACCESS.2020.3030190

    Article  Google Scholar 

  28. Spieser, K., Frazzoli, E.: The cow-path game: a competitive vehicle routing problem. In: Proceedings of the 51th IEEE Conference on Decision and Control (CDC 2012), 10–13 December 2012, Maui, HI, USA, pp. 6513–6520. IEEE (2012). https://doi.org/10.1109/CDC.2012.6426279

  29. Yao, A.C.: Probabilistic computations: toward a unified measure of complexity (extended abstract). In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1 November 1977, pp. 222–227. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.24

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Coleman .

Editor information

Editors and Affiliations

Appendices

Appendix

A Proofs From Sect. 4 (A Single Agent)

Theorem 4.6

Every online algorithm for the single-agent, line model must have a competitive ratio of at least 5.

Proof

Consider a scenario where the agent is placed at some arbitrarily small distance \(s > 0\) away from 0 and the object is at least a distance 2s from s. Any algorithm must involve a sequence of positive distances \(x_1, x_2, x_3, \ldots \) such that the agent moves left (or right) a distance \(x_1\) and back to s, then right (or left) a distance \(x_2\) and back to s, and so on. Clearly any optimal online algorithm of this form must satisfy \(x_{i+2} > x_i\) and any algorithm with a competitive ratio of 5 or better must satisfy \(x_i \le 3 x_{i-1}\) where \(x_1 \ge 2s\) (since the object at least a distance 2s from s). Thus, \(x_i < 2s \cdot 3^{i-1}\) for all \(i \ge 2\) and so the number of required turning points for an optimal online algorithm can be made arbitrarily large (by setting s to be arbitrarily small).

For some sequence of turning points, suppose the object is found on the \(k^\text {th}\) round (k can be arbitrarily large by the argument above) and observe the competitive ratio can then be written

$$\begin{aligned} \sup _{k,y,s}&\frac{\sum _{i=1}^{k-1} 2 x_i + 2y \pm s}{2y \pm s} = \sup _{k} \frac{\sum _{i=1}^{k-1} x_i + x_{k-2}}{x_{k-2}} \\&= 1 + \sup _{k} \frac{\sum _{i=1}^{k-1} x_i}{x_{k-2}} \ge 1 + \sup _{k} \frac{\sum _{i=1}^{k-1} r^i}{r^{k-2}} = 1 + \sup _{k} \frac{r^k - r}{(r-1)r^{k-2}} \end{aligned}$$

where \(r > 1\) (the expansion factor). The above inequality follows from Corollary 7.11 of Sect. 7.2 of [21] (following the method for proving the 9-competitive search on an infinite line in Sect. 8.2.1 of [21]). Then, since \(\frac{r^k - r}{(r-1)r^{k-2}}\) is increasing with respect to k (its derivative \(\frac{r^{3-k} \ln r}{r-1}\) is greater than 0 for any \(r>1\)), we can simplify the competitive ratio to

$$\begin{aligned} 1 + \sup _{k} \frac{r^k - r}{(r-1)r^{k-2}} = 1 + \lim _{k \rightarrow \infty } \frac{r^k - r}{(r-1)r^{k-2}} = 1 + \frac{r^2}{r-1} \end{aligned}$$

which has a minimum value of 5 for \(r=2\).    \(\square \)

Theorem 4.7

The expansion rate \(r=\frac{1}{W(1/e)} \approx 3.59112\) yields an expected competitive ratio of \(1 + \frac{1}{2 W(1/e)} \approx 2.79556\) for Algorithm 5 where W(x) is the product logarithm (Lambert W function [14]) of x.

Proof

Just as in the proof for Theorem 4.5, we consider the alternate algorithm \(A'\) such that the agent does not turn around early upon reaching an endpoint. It is clear that our original algorithm cannot perform worse than \(A'\) and in cases where an endpoint is never reached, the two algorithms are identical.

Let \(d = s \cdot r^{k+\delta }\) denote the position of the object where \(0 \le \delta < 1\). By executing Algorithm 5, the agent moves a distance \(r^{i+\epsilon }\) to the left and right in alternating rounds \(i=1,2,\ldots \). Consider the round when the agent moves a distance \(s \cdot r^k\) for the first time. If the agent moves \(r^k\) distance for the first time in the opposite direction of the object, then it will definitely find the object in round \(k+1\). The expected competitive ratio in this case can be written:

$$\begin{aligned} \mathbb {E} \left[ \frac{\sum _{i=1}^{k}s\cdot 2 r^{i+\epsilon } + 2d \pm s}{2d \pm s} \right]&= \mathbb {E} \left[ \frac{\sum _{i=1}^{k} 2 r^{i+\epsilon } + 2r^{k+\delta } \pm 1}{2r^{k+\delta } \pm 1} \right] \\&= \mathbb {E} \left[ 1 + \frac{2r^\epsilon \left( r^{k+1} - r \right) }{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) } \right] \\&= 1 + \frac{2 \left( r^{k+1} - r \right) }{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) } \cdot \mathbb {E} \left[ r^\epsilon \right] \\&= 1 + \frac{2 \left( r^{k+1} - r \right) }{\left( 2r^{k+\delta } \pm 1 \right) \ln r} \end{aligned}$$

since \(\mathbb {E}[r^\epsilon ] = \int _{1}^{r} x \frac{1}{x \ln r} dx = \frac{r-1}{\ln r}\).

On the other hand, if the agent moves a distance \(s \cdot r^k\) for the first time in the direction of the object, it will find it on round k if \(\epsilon \ge \delta \) and on round \(k+2\) otherwise. Let B be the event that \(\epsilon \ge \delta \), then the expected competitive ratio can be written:

$$\begin{aligned}&\mathbb {E} \left[ Pr[B] \left[ \frac{\sum _{i=1}^{k-1}s\cdot 2 r^{i+\epsilon } + 2d \pm s}{2d \pm s} \right] + (1-Pr[B]) \left[ \frac{\sum _{i=1}^{k+1}s\cdot 2 r^{i+\epsilon } + 2d \pm s}{2d \pm s} \right] \right] \\ =&~ \mathbb {E} \left[ Pr[B] \left[ 1+\frac{2r^\epsilon (r^k-r)}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) } \right] + (1-Pr[B]) \left[ 1+\frac{2r^\epsilon (r^{k+2}-r)}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) } \right] \right] \\ =&~ Pr[B] \left[ 1+\frac{2(r^k-r)}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) } \cdot \mathbb {E} \left[ r^\epsilon | B \right] \right] \\&~+ (1-Pr[B]) \left[ 1+\frac{2(r^{k+2}-r)}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) } \cdot \mathbb {E} \left[ r^\epsilon | \overline{B} \right] \right] \\ =&~ Pr[B] \left[ 1+\frac{2 (r^k-r) (r - r^\delta )}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) \ln r Pr[B]} \right] \\&~+ (1-Pr[B]) \left[ 1+\frac{2(r^{k+2}-r) (r^\delta - 1)}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) \ln r Pr[\overline{B}]} \right] \end{aligned}$$

since \(\mathbb {E}[r^\epsilon | B] = \int _{r^\delta }^{r} x \frac{1}{Pr[B] \cdot x \ln r} dx = \frac{r - r^\delta }{\ln r Pr[B]}\) and \(\mathbb {E}[r^\epsilon | \overline{B}] = \int _{1}^{r^\delta } x \frac{1}{Pr[\overline{B}] \cdot x \ln r} dx = \frac{r^\delta -1}{\ln r Pr[\overline{B}]}\). Then the expression can be further simplified:

$$\begin{aligned} =&~ 1 + \frac{2 (r^k-r) (r - r^\delta )}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) \ln r} + \frac{2(r^{k+2}-r) (r^\delta - 1)}{\left( 2r^{k+\delta } \pm 1 \right) \left( r-1 \right) \ln r} \\ =&~ 1 + \frac{2}{\left( 2r^{k+\delta } \pm 1 \right) (r - 1) \ln r} \left( (r^k-r)(r-r^\delta )+(r^{k+2}-r)(r^\delta -1) \right) \\ =&~ 1 + \frac{2}{\left( 2r^{k+\delta } \pm 1 \right) (r - 1) \ln r} (r - 1) (r^{\delta + k} + r^{d + k + 1} - r^{k + 1} - r) \\ =&~ 1 + \frac{2(r^{\delta + k} + r^{d + k + 1} - r^{k + 1} - r)}{\left( 2r^{k+\delta } \pm 1 \right) \ln r} \end{aligned}$$

Observe that, since the initial search direction is chosen uniformly randomly, the total expected competitive ratio is

$$\begin{aligned}&~ \frac{1}{2} \left[ 1 + \frac{2 \left( r^{k+1} - r \right) }{\left( 2r^{k+\delta } \pm 1 \right) \ln r} \right] + \frac{1}{2} \left[ 1 + \frac{2(r^{\delta + k} + r^{d + k + 1} - r^{k + 1} - r)}{\left( 2r^{k+\delta } \pm 1 \right) \ln r} \right] \\ =&~ 1 + \frac{\left( r^{k+1} - r \right) }{\left( 2r^{k+\delta } \pm 1 \right) \ln r} + \frac{(r^{\delta + k} + r^{d + k + 1} - r^{k + 1} - r)}{\left( 2r^{k+\delta } \pm 1 \right) \ln r} \\ =&~ 1 + \frac{r^{k+\delta } (1+r) - 2r}{\left( 2r^{k+\delta } \pm 1 \right) \ln r} \le 1 + \frac{r^{k+\delta } (1+r) - (1+r)}{\left( 2r^{k+\delta } - 1 \right) \ln r - \ln r} = 1 + \frac{(1+r) (r^{k+\delta } - 1)}{\ln r \left( 2r^{k+\delta } - 2 \right) } \\ =&~ 1 + \frac{1+r}{2 \ln r}. \end{aligned}$$

Finally, with an expansion rate of \(r=\frac{1}{W(1/e)} \approx 3.59112\), the above upper bound becomes \(1 + \frac{1}{2 W(1/e)} \approx 2.79556\).    \(\square \)

B Proofs From Sect. 5 (Two Agents)

Theorem 5.2

Algorithm 7 has a competitive ratio of \(\min \left( 1+\sqrt{2}, \frac{3}{1+2v} \right) \).

Proof

The proof is very similar to that of Theorem 5.1. Without loss of generality, suppose the first agent has a speed of 1 and the second agent a speed of \(v \le 1\). For the case where \(v \le \frac{2-\sqrt{2}}{2+2\sqrt{2}}\) or \(v=1\), the first agent exactly performs Algorithm 1, and so a competitive ratio of \(1+\sqrt{2}\) is achieved. The interesting case, then is when \(\frac{2-\sqrt{2}}{2+2\sqrt{2}}< v < 1\). First, if the fast agent still arrives at the object first, the competitive ratio is \(\frac{3+v}{1+3v}\) (using the same analysis as used in the proof for Theorem 5.1). Otherwise, if the slow agent arrives at the object before the fast agent reaches 0 (i.e. \(s > \frac{y-s}{v} \Rightarrow y < s(v+1)\)), then the competitive ratio is

$$\begin{aligned} \frac{t + (y - (tv - (y-s)))}{2y-s}&= \frac{s(2-v)-2y}{v(s-2y)} \le \frac{3}{1+2v} \end{aligned}$$

where \(t = \frac{2\left( y-\left( s-\frac{y-s}{v} \right) \right) }{1+v}\) is the time the agents meet for a handover. The first equality follows from substituting this value for t and the final inequality follows since \(\frac{s(2-v)-2y}{v(s-2y)}\) is increasing with respect to y (its derivative with respect to y, \(\frac{2s(1-v)}{v(s-2y)^2}\), is positive for all \(v < 1\)) and \(y < s(v+1)\). On the other hand, if the slow agent finds the object after the fast agent reaches 0 but still before it catches up (\(s< \frac{y-s}{v} < y+s\)), then the competitive ratio is

$$\begin{aligned} \frac{t + (y - (tv - (y-s)))}{2y-s}&= \frac{s(1+v)-4y}{(1+v)(s-2y)} = \frac{s(1+v)-4y}{s(1+v)- 2y(1+v)} \le \frac{3}{1+2v} \end{aligned}$$

where \(t = \frac{2y}{1+v}\) is the time the agents meet for a handover. The first equality follows from substituting this value for t and the final inequality follows since \(\frac{s(1+v)-4y}{s(1+v)- 2y(1+v)}\) is decreasing with respect to y (its derivative with respect to y, \(\frac{2s(v-1)}{(1+v)(s-2y)^2}\), is negative for all \(v < 1\)) and \(y > s(1+v)\). Finally, observe the second and third cases dominate the competitive ratio:

$$\begin{aligned} \frac{3}{1+2v} \ge \frac{3+v}{1+3v} ~\Rightarrow ~ 3+9v \ge 3+7v+2v^2 ~\Rightarrow ~ v(1-v) \ge 0 \end{aligned}$$

Clearly this condition is always satisfied since \(0 \le v \le 1\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coleman, J., Cheng, L., Krishnamachari, B. (2023). Search and Rescue on the Line. In: Rajsbaum, S., Balliu, A., Daymude, J.J., Olivetti, D. (eds) Structural Information and Communication Complexity. SIROCCO 2023. Lecture Notes in Computer Science, vol 13892. Springer, Cham. https://doi.org/10.1007/978-3-031-32733-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32733-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32732-2

  • Online ISBN: 978-3-031-32733-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics