Skip to main content

Common Evolution of Mechanical and Transport Properties in Thermally Cracked Westerly Granite at Elevated Hydrostatic Pressure

  • Chapter
  • First Online:
Rock Physics and Natural Hazards

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Increasing the damage and crack porosity in crustal rocks can result in significant changes to various key physical properties, including mechanical strength, elastic and mechanical anisotropy, and the enhancement of transport properties. Using a Non-Interactive Crack Effective Medium (NIC) theory as a fundamental tool, we show that elastic wave dispersion can be inverted to evaluate crack density as a function of temperature and is compared with optically determined crack density. Further, we show how the existence of embedded microcrack fabrics in rocks also significantly influences the fracture toughness (KIC) of rocks as measured via a suite of tensile failure experiments (chevron cracked notch Brazilian disk); Finally, we include fluid flow in our analysis via the Guéguen and Dienes crack porosity-permeability model. Using the crack density and aspect ratio recovered from the elastic-wave velocity inversion, we saccessfully compare permeability evolution with pressure with the laboratory measurements of permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, B.K. and Meredith, P.G., Experimental fracture mechanics data for rocks and minerals. In Fracture Mechanics of Rocks (ed. B. K. Atkinson) (Academic Press, London 1987) pp. 477–525.

    Google Scholar 

  • Atkinson, B.K. (1984), Subcritical crack growth in geological materials, J. Geophys. Res. 89, 4077–114.

    Article  Google Scholar 

  • Balme, M.R., Rocchi, V., Jones, C., Sammonds, P.R., Meredith, P.G., and Boon, S. (2004), Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell, J. Volcanol. Geotherm. Res. 132 (2–3), 159–172.

    Article  Google Scholar 

  • Baure, S.J. and Johnson, B. (1979), Effects of slow uniform heating on the Westerly and Charcoal granites. Proc. 20th Symp. On Rock Mechanics, Austin, Texas, 7–18. ASCE, New York.

    Google Scholar 

  • Benson, P. Meredity, P., and Schubnel, A. (2006), Examining the role of void space fabric in permeability evolution with from statistics and percolation, J Geophys Res. (in press).

    Google Scholar 

  • Brace, W.F., Walsh, J.B., and Frangos, T. (1968), Permeability of granite under pressure, J. Geophys. Res. 6, 2225–2236.

    Article  Google Scholar 

  • Brace, W. and Martin, A. (1968), A test of law of effective stress for crystalline rocks of low porosity, Int. J. Rock Mech, Min. Sci. 5, 416–426.

    Article  Google Scholar 

  • Cheng, C.H. and Toksoz, M.N. (1979), Inversion of seismic velocities for the pore aspect ratio spectrum of a rock, J. Geophys. Res. 84, 7533–7543.

    Article  Google Scholar 

  • Darot, M., Guéguen, Y., and Baratin, M.-L. (1992), Permeability of thermally cracked granite, Geophys. Res. Le. 19(9), 869–872.

    Article  Google Scholar 

  • Engvik, A.K., Bertram, A., Kalthoff, J.F., Stockhert, B., Austrheim, H. and Elvevold, S. (2005), Magmadriven hydraulic fracturing and infiltration of into the damaged host rock, and example from Drowning Maud land, Antarctica, J. Structural Geol. 27, 839–854.

    Article  Google Scholar 

  • Fredrich, J.T. and Wong, T.-F. (1986), Micromechanics of thermally induced cracking in three crustal rocks, J Geophy Res. 91, B12 12743–12764.

    Article  Google Scholar 

  • Funatsu, T., Seto, M., Shimada, H., Matsui, K., and Kuruppu, M. (2004), Combined effects of increasing temperature and confining pressure on the fracture toughness of clay-bearing rocks., Int. J. R. Mech. Min. Sci. 41, 927–938.

    Article  Google Scholar 

  • Gueguen, Y., and Dienes, J. (1988), Transport properties of rocks from statistics and percolation. J. Fath. Geol. 21, 1, 131.

    Google Scholar 

  • Guéguen, Y. and Palciauskas, V. Introduction to the Physics of Rocks, 292 pp. (Princeton University Press, New Jersey 1994).

    Google Scholar 

  • Guéguen, Y., and Schubnel, A. (2003), Elastic-wave velocities and permeability in cracked rocks, Tectonophysics 370, 163–176.

    Article  Google Scholar 

  • Hadley, K. (1976), Comparison of calculated and observed crack densities and seismic velocities in Westerly granite, J. Geophys. Res. 87, 9340–9348.

    Google Scholar 

  • Heard, H.C. and Page, L., (1982), Elastic moduli, thermal expansion and inferred permeability of two granites to 350°C and 55 Megapascals, J. Geophys. Res., 87, 9349–9348.

    Article  Google Scholar 

  • Heuze, F.E. (1983), High-temperature mechanical, physical and thermal properties of granitic rocks-A review, Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr. 28 (1), 3–10.

    Google Scholar 

  • ISRM (1995), Suggested method for determining Mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32, 57–64.

    Article  Google Scholar 

  • Kachanov, M. (1994), Elastic solids with many cracks and related problems, Adv. Appl. Mech. 30, 259–445.

    Article  Google Scholar 

  • Kern, H. (1978), The effect of high temperature and high confining pressure on compressional wave velocities in quartz bearing and quartz free igneous and metamorphic rocks, Tectonophysics 44, 185–203.

    Article  Google Scholar 

  • Kern, H., Liu, B., and Popp, T. (1997), Relationship between anisotropy of P-and S-wave velocities and anisotropy of attenuation in serpentinite and amphibolite, J. Geophys. Res. 102, 3051–3065.

    Article  Google Scholar 

  • Launeau, P. and Robin, P.-YF. (1996), Fabric analysis using the intercept method., Tectonophysics 267(1–4), 91–119.

    Article  Google Scholar 

  • Le Ravalec, M. and Guéguen, Y. (1996), High and low frequency elastic moduli for a saturated porous/cracked rock—Differential self-consistent and poroelastic theories, Geophysics 61, 1080–1094.

    Article  Google Scholar 

  • Mavkl, G. Mukerji, T., and Dvorkin, J. The Rock Physics Handbook (Cambridge University Press, 1999) 329 pp.

    Google Scholar 

  • Meredith, P.G. and Atkinson, B.K. (1985), Fracture toughness and subcritical crack growth during hightemperature tensile deformation of Westerly granite and Black gabbro. Phys. Earth and Plan. Int. 39, 33–51.

    Article  Google Scholar 

  • Nasseri, M.H.B., Mohanty, B., and Robin, P.-YF. (2005), Characterization of microstructures and fracture toughness in five granitic rocks, Int. J. Rock Mech. Min. Sci. 42, 450–560.

    Article  Google Scholar 

  • Nasseri, M.H.B., Mohanty, B., and Young, R.P. (2006), Fracture toughness measurements and acoustic emission activity in brittle rocks, Pure Appl. Geophys. 163, 917–945.

    Article  Google Scholar 

  • Nasseri, M.H.B., Schubnel, A., and Young, R.P. (2007), Coupled evolutions of fracture toughness and elasticwave velocities at high crack density in thermally treated Westerly Granite, Int. J. Rock. Mech. and Min. Sci. 44(4), 601–616.

    Article  Google Scholar 

  • Nasseri, M.H.B. and Mohanty, B. (2008), Fracture toughness anisotropy in granitic rocks. J. Rock Mech. and Min. Sci. 45, 167–193.

    Article  Google Scholar 

  • Nasseri, M.H.B., Tatone, B.S.A., Grasseli, G. and Young, R.P. (2008), Fracture toughness and fracture roughness interrelationship in thermally treated Westerly granite (submitted to the same volume of special issue, Pure Appl. Geophys).

    Google Scholar 

  • O’Connell, R., and Budiansky, B. (1974), Seismic velocities in dry and saturated rocks, J. Geophys. Res. 79, 5412–5426.

    Article  Google Scholar 

  • Reuschle, T., Gbaguidi Haore, S., and Darot, M. (2006), The effect of heating on microstructural evolution of La Peyratte granite deduced from acoustic velocity measurements, Earth Planet. Sci. Lett. 243, 692–700.

    Article  Google Scholar 

  • Rutqvist, J., Barr, D., Datta, R., Gens, A., Millard, S., Olivella, S., Tsang, C.-F. and Tsang, Y. (2005), Coupled thermal-hydrological-mechanical analyses of the Yucca mountain shaft scale test-comparison of field measurements to predictions of four different numerical models, Int. J. Rock Mech. Min. Sci. 42, 680–697.

    Article  Google Scholar 

  • Sayers, C.M. and Kachanov, M. (1995), Microcrack induced elastic wave anisotropy of brittle rocks. J. Geophys Res. 100, 4149–56.

    Article  Google Scholar 

  • Schubnel, A., and Gueguen, Y. (2003), Anisotropy and dispersion in cracked rocks. J Geophys. Res. 108 art 2101.

    Google Scholar 

  • Schubnel, A., and Benson, P.M., Thompson, B.D., Hazzard, J.F., and Young, R.P. (2006), Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities. Pare Appl. Geophys. 163, 947–973.

    Article  Google Scholar 

  • Simmons, G., and Brace, W.F. (1965), Comparison of static and dynamic measurements of compressibility of rocks, J. Geophys. Res. 70, 5649–5656.

    Article  Google Scholar 

  • Thompson, B.D., Young, R.P., and Lockner, D.A. (2006), Fracture in Westerly granite under AE feedback and constant strain rate loading: nucleation, quasi-static propagation, and the transition to unstable fracture propagation, Pure Appl. Geophys. 163, 995–1019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Nasseri, M.H.B., Schubnel, A., Benson, P.M., Young, R.P. (2009). Common Evolution of Mechanical and Transport Properties in Thermally Cracked Westerly Granite at Elevated Hydrostatic Pressure. In: Vinciguerra, S., Bernabé, Y. (eds) Rock Physics and Natural Hazards . Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0122-1_9

Download citation

Publish with us

Policies and ethics