Skip to main content

Local Covariance and Background Independence

  • Chapter
  • First Online:
Quantum Field Theory and Gravity

Abstract

One of the many conceptual difficulties in the development of quantum gravity is the role of a background geometry for the structure of quantum field theory. To some extent the problem can be solved by the principle of local covariance. The principle of local covariance was originally imposed in order to restrict the renormalization freedom for quantum field theories on generic spacetimes. It turned out that it can also be used to implement the request of background independence. Locally covariant fields then arise as background-independent entities.

Mathematics Subject Classification (2010). 83C45, 81T05, 83C47.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Barnich, F. Brandt, M. Henneaux, Phys. Rept. 338 (2000) 439 [arXiv:hepth/0002245].

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bastiani, J. Anal. Math. 13, (1964) 1-114.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. A. Batalin, G. A. Vilkovisky, Phys. Lett. 102B (1981) 27.

    MathSciNet  Google Scholar 

  4. C. Becchi, A. Rouet, R. Stora, Commun. Math. Phys. 42 (1975) 127.

    Article  MathSciNet  Google Scholar 

  5. C. Becchi, A. Rouet, R. Stora, Annals Phys. 98 (1976) 287.

    Article  MathSciNet  Google Scholar 

  6. N. E. J. Bjerrum-Bohr, Phys. Rev. D 67 (2003) 084033.

    Article  MathSciNet  Google Scholar 

  7. R. Brunetti, K. Fredenhagen, proceedings of Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany, 28 Jul - 1 Aug 2005. In: B. Fauser et al. (eds.), Quantum gravity, 151-159 [arXiv:grqc/0603079v3].

    Google Scholar 

  8. R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237 (2003) 31-68.

    MathSciNet  MATH  Google Scholar 

  9. R. Brunetti, M. Dütsch, K. Fredenhagen, Adv. Theor. Math. Phys. 13(5) (2009) 1541-1599 [arXiv:math-ph/0901.2038v2].

    Google Scholar 

  10. M. Dütsch and K. Fredenhagen, Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena, June 20-25 2000 [arXiv:hepth/0101079].

    Google Scholar 

  11. M. Dütsch and K. Fredenhagen, Rev. Math. Phys. 16(10) (2004) 1291-1348 [arXiv:hep-th/0403213].

    Google Scholar 

  12. M. Dütsch and K. Fredenhagen, Commun. Math. Phys. 243 (2003) 275 [arXiv:hep-th/0211242].

    Google Scholar 

  13. K. Fredenhagen, Locally Covariant Quantum Field Theory, Proceedings of the XIVth International Congress on Mathematical Physics, Lisbon 2003 [arXiv:hep-th/0403007].

    Google Scholar 

  14. K. Fredenhagen, K. Rejzner, [arXiv:math-ph/1101.5112].

    Google Scholar 

  15. A. Frölicher, A. Kriegl, Linear spaces and differentiation theory, Pure and Applied Mathematics, J. Wiley, Chichester, 1988.

    Google Scholar 

  16. R. S. Hamilton, Bull. Amer. Math. Soc. (N.S.) 7(1) (1982) 65-222.

    Google Scholar 

  17. S. Hollands, R. Wald, Commun. Math. Phys. 223 (2001) 289.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Hollands, R. M. Wald, Commun. Math. Phys. 231 (2002) 309.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. D. Michal, Proc. Nat. Acad. Sci. USA 24 (1938) 340-342.

    Article  Google Scholar 

  20. A. Kriegl, P. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs 53, American Mathematical Society, Providence 1997. www.ams.org/online_bks/surv53/1.

  21. J. Milnor, Remarks on infinite-dimensional Lie groups, In: B. DeWitt, R. Stora (eds.), Les Houches Session XL, Relativity, Groups and Topology II, North-Holland (1984), 1007-1057.

    Google Scholar 

  22. K.-H. Neeb, Monastir lecture notes on infinite-dimensional Lie groups, www.math.uni-hamburg.de/home/wockel/data/monastir.pdf1.

  23. M. Reuter, Phys. Rev. D 57 (1998) 971 [arXiv:hep-th/9605030].

    Article  MathSciNet  Google Scholar 

  24. G. Segal, In: Proceedings of the IXth International Congress on Mathematical Physics (Bristol, Philadelphia), eds. B. Simon, A. Truman and I. M. Davies, IOP Publ. Ltd. (1989), 22-37.

    Google Scholar 

  25. C. Torre, M. Varadarajan, Class. Quant. Grav. 16(8) (1999) 2651.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Verch, Ph.D. Thesis, University of Hamburg, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fredenhagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Fredenhagen, K., Rejzner, K. (2012). Local Covariance and Background Independence. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3_2

Download citation

Publish with us

Policies and ethics