Skip to main content

Geometric Aspects of the Periodic μ-Degasperis-Procesi Equation

  • Chapter
  • First Online:
Parabolic Problems

Abstract

We consider the periodic μDP equation (a modified version of the Degasperis-Procesi equation) as the geodesic flow of a right-invariant affine connection on the Fréchet Lie group Diff(\(\mathbb{S}^1\)) of all smooth and orientation-preserving diffeomorphisms of the circle \(\mathbb{S}^1\,=\,\mathbb{R}/\mathbb{Z}\). On the Lie algebra C(\(\mathbb{S}^1\)) of Diff(\(\mathbb{S}^1\)), this connection is canonically given by the sum of the Lie bracket and a bilinear operator. For smooth initial data, we show the short time existence of a smooth solution of μDP which depends smoothly on time and on the initial data. Furthermore, we prove that the exponential map defined by is a smooth local diffeomorphism of a neighbourhood of zero in C(\(\mathbb{S}^1\)) onto a neighbourhood of the unit element in Diff(\(\mathbb{S}^1\)). Our results follow from a general approach on non-metric Euler equations on Lie groups, a Banach space approximation of the Fréchet space C(\(\mathbb{S}^1\)), and a sharp spatial regularity result for the geodesic flow.

Mathematics Subject Classification (2000). Primary 53D25; Secondary 37K65.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361.

    Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics. Springer, 1989.

    Google Scholar 

  3. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II: The KdV equation. Geom. Funct. Anal., 3 (1993), 209–262.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71 (1993), 1661–1664.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51 (1998), 475–504.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations. Acta Math., 181 (1998), 229–243.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Constantin and J. Escher, Global weak solutions for a shallow water equation. Indiana Univ. Math. J., 47 (1998), 1527–1545.

    MATH  MathSciNet  Google Scholar 

  8. A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems. J. Phys. A, 35 (2002), R51–R79.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv., 78 (2003), 787–804.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal., 192 (2009), 165–186.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. De Lellis, T. Kappeler, and P. Topalov, Low regularity solutions of the periodic Camassa-Holm equation. Comm. in PDE, 32 (2007), 82–126.

    Article  Google Scholar 

  12. A. Degasperis and M. Procesi, Asymptotic integrability. Symmetry and perturbation theory. (eds. A. Degasperis and G. Gaeta), Singapore:World Scientific (1999), 23–27.

    Google Scholar 

  13. A. Degasperis, D.D. Holm, and A.N.I. Hone, A new integrable equation with peakon solutions. Teoret. Mat. Fiz., 133 (2002), 170–183.

    MathSciNet  Google Scholar 

  14. H.R. Dullin, G. Gottwald, and D.D. Holm, On asymptotically equivalent shallow water wave equations. Phys. D, 190 (2004), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  15. D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. of Math., 92 (1970), 102–163.

    Article  MathSciNet  Google Scholar 

  16. J. Escher, Wave breaking and shock waves for a periodic shallow water equation. Phil. Trans. R. Soc. A, 365 (2007), 2281–2289.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, to appear in Math. Z., 2011.

    Google Scholar 

  18. J. Escher and J. Seiler, The periodic b-equation and Euler equations on the circle. J. Math. Phys., 51 (2010).

    Google Scholar 

  19. J. Escher and Z. Yin, Well-posedness, blow-up phenomena and global solutions for the b-equation. J. Reine Angew. Math., 624 (2008), 51–80.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Escher, Y. Liu, and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation. Indiana Univ. Math. J., 56 (2007), 87–117.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.I. Ivanov.Water waves and integrability. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267–2280.

    Article  MATH  MathSciNet  Google Scholar 

  22. R.S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech., 455 (2007), 63–82.

    Google Scholar 

  23. T. Kappeler and P. Topalov, Global well-posedness of KdV in H 1(T;ℝ). Duke Math. J., 135 (2006), 327–360.

    Article  MATH  MathSciNet  Google Scholar 

  24. C.E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math., 46 (1993), 527–620.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Kolev, Some geometric investigations of the Degasperis-Procesi shallow water equation. Wave motion, 46 (2009), 412–419.

    Article  MathSciNet  Google Scholar 

  26. S. Kouranbaeva, The Camassa-Holm equation as a geodesic fow on the diffeomorphism group. J. Math. Phys., 40 (1999), 857–868.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Lang, Real and Functional Analysis, 3rd Edition, Springer, 1993.

    Google Scholar 

  28. S. Lang, Fundamentals of Differential Geometry, Springer, 1999.

    Google Scholar 

  29. J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys., 57 (2007), 2049–2064.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Lenells, Weak geodesic flow and global solutions of the Hunter-Saxton equation. Disc. Cont. Dyn. Syst., 18 (2007), 643–656.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Lenells, G. Misiołek, and F. Tiğlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Commun. Math. Phys., 299 (2010), 129–161.

    Article  MATH  Google Scholar 

  32. P.W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. Volume 69 of Progr. Nonlinear Differential Equations Appl., 133–215, Birkhäuser, 2006.

    Article  MathSciNet  Google Scholar 

  33. G. Misiołek, Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal., 12 (2002), 1080–1104.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Escher .

Editor information

Editors and Affiliations

Additional information

Dedicated to Herbert Amann on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Escher, J., Kohlmann, M., Kolev, B. (2011). Geometric Aspects of the Periodic μ-Degasperis-Procesi Equation. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_10

Download citation

Publish with us

Policies and ethics