Skip to main content

Part of the book series: Autonomic Systems ((ASYS,volume 1))

Abstract

Chemical information processing possesses a variety of valuable properties, such as robustness, concurrency, fault-tolerance and evolvability. However, it is difficult to predict and program a chemical system because the computation emerges as a global phenomenon from microscopic reactions. For programming chemical systems a theoretical method to cope with that emergent behaviour is desirable. Here we will review design principles for chemical programs. We focus on programs that should compute a qualitative and not a quantitative result. The design principles are based on chemical organisation theory, which defines a chemical organisation as a closed and self-maintaining set of molecular species. The fundamental assumption of so-called organisation-oriented programming is that computation should be understood as a movement between chemical organisations. In this case we expect that the resulting system is more robust and fine-tuning of the kinetic laws will be less important. As examples for the usage of this design method we show a logic gate and a solution to the maximal independent set problem implemented as artificial chemistries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorical problems. Science 266, 1021 (1994)

    Article  Google Scholar 

  2. Banâtre, J.-P., Métayer, D.L.: A new computational model and its discipline of programming. Tech. Rep. RR-0566, INRIA (1986)

    Google Scholar 

  3. Banâtre, J.-P., Métayer, D.L.: The GAMMA model and its discipline of programming. Sci. Comput. Program. 15(1), 55–77 (1990)

    Article  MATH  Google Scholar 

  4. Banâtre, J.-P., Fradet, P., Radenac, Y.: Principles of chemical programming. In: Abdennadher, S., Ringeissen, C. (eds.) RULE’04 Fifth International Workshop on Rule-Based Programming, pp. 98–108. Tech. Rep. AIB-2004-04, Dept. of Comp. Sci., RWTH Aachen, Germany (2004)

    Google Scholar 

  5. Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent computation by catalytic reactions. Nanotechnology 7(1), 307–314 (1996)

    Article  Google Scholar 

  6. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1), 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signalling pathways. Science 283, 381–387 (1999)

    Article  Google Scholar 

  8. Cherry, C.: On Human Communication: A Review, a Survey, and a Criticism, 2nd edn. Chap. 5. MIT Press, Cambridge (1966)

    Google Scholar 

  9. Clarke, B.L.: Stability of complex reaction networks. Adv. Chem. Phys. 42, 1–213 (1980)

    Article  Google Scholar 

  10. Dittrich, P.: The bio-chemical information processing metaphor as a programming paradigm for organic computing. In: Brinkschulte, U., Becker, J., Hochberger, C., Martinetz, T., Müller-Schloer, C., Schmeck, H., Ungerer, T., Würtz, R. (eds.) ARCS ’05—18th International Conference on Architecture of Computing Systems 2005, pp. 95–99. VDE Verlag, Berlin (2005)

    Google Scholar 

  11. Dittrich, P., Speroni di Fenizio, P.: Chemical organisation theory. Bull. Math. Biol. 69(4), 1199–1231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feinberg, M., Horn, F.J.M.: Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29(3), 775–787 (1974)

    Article  Google Scholar 

  13. Fontana, W., Buss, L.W.: “The arrival of the fittest”: Toward a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)

    MATH  Google Scholar 

  14. Giavitto, J.-L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. In: van den Brand, M., Verma, R. (eds.) Electr. Notes in Theor. Comput. Sci., vol. 59. Elsevier, Amsterdam (2001)

    Google Scholar 

  15. Gooding, D.: Experiment and the Making of Meaning. Kluwer Academic, Dordrecht (1990)

    Google Scholar 

  16. Guido, N.J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C.R., Elston, T.C., Collins, J.J.: A bottom-up approach to gene regulation. Nature 439(7078), 856–860 (2006)

    Article  Google Scholar 

  17. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  18. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  19. Kulkarni, D., Simon, H.A.: Experimentation in machine discovery. In: Shrager, J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 255–273. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  20. Küppers, B.-O.: Information and the Origin of Life. MIT Press, Cambridge (1990)

    Google Scholar 

  21. Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M.: Scientific Discovery: Computational Exploration of the Creative Processes. MIT Press, Cambridge (1987)

    Google Scholar 

  22. Lenser, T., Matsumaru, N., Hinze, T., Dittrich, P.: Tracking the evolution of chemical computing networks. In: Bullock, S., Noble, J., Watson, R.A., Bedau, M.A. (eds.) Proceedings of the Eleventh International Conference on Artificial Life, pp. 343–350. MIT Press, Cambridge (2008)

    Google Scholar 

  23. Matsumaru, N., Dittrich, P.: Organization-oriented chemical programming for the organic design of distributed computing systems. In: 1st International Conference on Bio Inspired Models of Network, Information and Computing Systems (BIONETICS), Cavalese, Italy, 11–13 December 2006. ACM International Conference Proceeding, vol. 275. IEEE, New York (2006)

    Google Scholar 

  24. Matsumaru, N., Centler, F., Zauner, K.-P., Dittrich, P.: Self-adaptive scouting - autonomous experimentation for systems biology. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) Applications of Evolutionary Computing, EvoWorkshops2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Coimbra, Portugal, 5–7 Apr. 2004. LNCS, vol. 3005, pp. 52–61. Springer, Berlin (2004)

    Google Scholar 

  25. Matsumaru, N., Centler, F., Speroni di Fenizio, P., Dittrich, P.: Chemical organization theory as a theoretical base for chemical computing. Int. J. Unconv. Comput. 3(4), 285–309 (2007)

    Google Scholar 

  26. Matsumaru, N., Lenser, T., Hinze, T., Dittrich, P.: Toward organization-oriented chemical programming: A case study with the maximal independent set problem. In: Dressler, F., Carreras, I. (eds.) Advances in Biologically Inspired Information Systems. Studies in Computational Intelligence, vol. 69, pp. 147–163. Springer, Berlin (2007)

    Chapter  Google Scholar 

  27. Müller-Schloer, C.: Organic computing: On the feasibility of controlled emergence. In: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS2004, pp. 2–5. ACM Press, New York (2004). ISBN 1-58113-937-3. doi:10.1145/1016720.1016724

    Chapter  Google Scholar 

  28. Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Aktuelles Schlagwort: Organic Computing. Inform. Spektr. 27(4), 332–336 (2004)

    Google Scholar 

  29. Peter, S., Dittrich, P.: On the relation between organizations and limit sets in chemical reaction systems (in print). Adv. Complex Syst. 14(1), 77–96 (2011)

    Article  Google Scholar 

  30. Pfaffmann, J.O., Zauner, K.-P.: Scouting context-sensitive components. In: Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S. (eds.) The Third NASA/DoD Workshop on Evolvable Hardware, Long Beach, California, 12–14 July 2001, pp. 14–20. Jet Propulsion Laboratory, California Institute of Technology, IEEE Comput. Soc., Los Alamitos (2001)

    Chapter  Google Scholar 

  31. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MATH  Google Scholar 

  32. Sahle, S., Gauges, R., Pahle, J., Simus, N., Kummer, U., Hoops, S., Lee, C., Singhal, M., Xu, L., Mendes, P.: Simulation of biochemical networks using copasi—a complex pathway simulator. In: Proceedings of the Winter Simulation Conference, 2006. WSC 06, pp. 1698–1706 (2006)

    Google Scholar 

  33. Speroni di Fenizio, P., Dittrich, P.: Artificial chemistry’s global dynamics. movement in the lattice of organisation. J. Three Dimensional Images 16(4), 160–163 (2002)

    Google Scholar 

  34. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent physarum logical-computing. Biosystems 73(1), 45–55 (2004)

    Article  MATH  Google Scholar 

  35. von der Malsburg, C.: The challenge of organic computing. Memorandum, Comp. Sci. Dept. (1999)

    Google Scholar 

  36. Würtz, R.P.: Organic computing for face and object recognition. In: Dadam, P., Reichert, M. (eds.) Informatik 2004, vol. 2, pp. 636–640. Gesellschaft für Informatik (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dittrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Matsumaru, N., Kreyssig, P., Dittrich, P. (2011). Organisation-Oriented Chemical Programming. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0130-0_13

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0129-4

  • Online ISBN: 978-3-0348-0130-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics