Skip to main content

G-CSF Receptor Structure, Function, and Intracellular Signal Transduction

  • Chapter
  • First Online:
Twenty Years of G-CSF

Abstract

The G-CSF receptor (G-CSFR), like other members of the type-I cytokine receptor family, is a single transmembrane-spanning protein lacking intrinsic kinase activity, and is composed of an extracellular cytokine receptor homologous (CRH) domain containing four conserved cysteine residues and a Trp-Ser-X-Trp-Ser (WSXWS, where X is a nonconserved amino acid) motif, and shared elements in the intracellular region denoted as Box 1 and Box 2 (Fig. 1). This receptor also comprises an immunoglobulin (Ig)-like domain and 3 fibronectin type III (FNIII)-like domains in the extracellular portion, as well as a cytoplasmic region containing a conserved sequence termed Box 3 [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen A, Davis T, Curtis BM et al (1990) Expression cloning of a human granulocyte colony-stimulating factor receptor: a structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin domains. J Exp Med 172:1559–1570

    Article  PubMed  CAS  Google Scholar 

  2. Fukunaga R, Ishizaka-Ikeda E, Seto Y, Nagata S (1990) Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell 61:341–350

    Article  PubMed  CAS  Google Scholar 

  3. Yamasaki K, Naito S, Anaguchi H, Ohkubo T, Ota Y (1997) Solution structure of an extracellular domain containing the WSxWS motif of the granulocyte colony-stimulating factor receptor and its interaction with ligand. Nat Struct Biol 4:498–504

    Article  PubMed  CAS  Google Scholar 

  4. Fukunaga R, Ishizaka-Ikeda E, Pan CX, Seto Y, Nagata S (1991) Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J 10:2855–2865

    PubMed  CAS  Google Scholar 

  5. Nicola NA, Peterson L (1986) Identification of distinct receptors for two hemopoietic growth factors (granulocyte colony-stimulating factor and multipotential colony-stimulating factor) by chemical cross-linking. J Biol Chem 261:12384–12389

    PubMed  CAS  Google Scholar 

  6. Tamada T, Honjo E, Maeda Y et al (2006) Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc Natl Acad Sci U S A 103:3135–3140

    Article  PubMed  CAS  Google Scholar 

  7. McKinstry WJ, Li CL, Rasko JE, Nicola NA, Johnson GR, Metcalf D (1997) Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89:65–71

    PubMed  CAS  Google Scholar 

  8. Nicola NA, Metcalf D (1985) Binding of 125I-labeled granulocyte colony-stimulating factor to normal murine hemopoietic cells. J Cell Physiol 124:313–321

    Article  PubMed  CAS  Google Scholar 

  9. Manz MG, Miyamoto T, Akashi K, Weissman IL (2002) Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99:11872–11877

    Article  PubMed  CAS  Google Scholar 

  10. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5:491–501

    Article  PubMed  CAS  Google Scholar 

  11. Lieschke GJ, Grail D, Hodgson G et al (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737–1746

    PubMed  CAS  Google Scholar 

  12. Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T (2000) Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95:270–276

    PubMed  CAS  Google Scholar 

  13. Morikawa K, Morikawa S, Nakamura M, Miyawaki T (2002) Characterization of granulocyte colony-stimulating factor receptor expressed on human lymphocytes. Br J Haematol 118:296–304

    Article  PubMed  CAS  Google Scholar 

  14. Shimoda K, Okamura S, Harada N, Kondo S, Okamura T, Niho Y (1993) Identification of a functional receptor for granulocyte colony-stimulating factor on platelets. J Clin Invest 91:1310–1313

    Article  PubMed  CAS  Google Scholar 

  15. Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    Article  PubMed  CAS  Google Scholar 

  16. Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95:3025–3031

    PubMed  CAS  Google Scholar 

  17. Budel LM, Touw IP, Delwel R, Lowenberg B (1989) Granulocyte colony-stimulating factor receptors in human acute myelocytic leukemia. Blood 74:2668–2673

    PubMed  CAS  Google Scholar 

  18. Corcione A, Corrias MV, Daniele S, Zupo S, Spriano M, Pistoia V (1996) Expression of granulocyte colony-stimulating factor and granulocyte colony-stimulating factor receptor genes in partially overlapping monoclonal B-cell populations from chronic lymphocytic leukemia patients. Blood 87:2861–2869

    PubMed  CAS  Google Scholar 

  19. Trumpp A, Essers M, Wilson A (2010) Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10:201–209

    Article  PubMed  CAS  Google Scholar 

  20. Calhoun DA, Donnelly WH Jr, Du Y, Dame JB, Li Y, Christensen RD (1999) Distribution of granulocyte colony-stimulating factor (G-CSF) and G-CSF-receptor mRNA and protein in the human fetus. Pediatr Res 46:333–338

    Article  PubMed  CAS  Google Scholar 

  21. Fukunaga R, Seto Y, Mizushima S, Nagata S (1990) Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci U S A 87:8702–8706

    Article  PubMed  CAS  Google Scholar 

  22. Schneider A, Kruger C, Steigleder T et al (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    Article  PubMed  CAS  Google Scholar 

  23. Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311

    Article  PubMed  CAS  Google Scholar 

  24. Bussolino F, Wang JM, Defilippi P et al (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473

    Article  PubMed  CAS  Google Scholar 

  25. Seto Y, Fukunaga R, Nagata S (1992) Chromosomal gene organization of the human granulocyte colony-stimulating factor receptor. J Immunol 148:259–266

    PubMed  CAS  Google Scholar 

  26. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88:1234–1247

    PubMed  CAS  Google Scholar 

  27. Anderson KL, Smith KA, Conners K, McKercher SR, Maki RA, Torbett BE (1988) Myeloid development is selectively disrupted in PU.1 null mice. Blood 91:3702–3710

    Google Scholar 

  28. Aritomi M, Kunishima N, Okamoto T, Kuroki R, Ota Y, Morikawa K (1999) Atomic structure of the GCSF-receptor complex showing a new cytokine-receptor recognition scheme. Nature 401:713–717

    Article  PubMed  CAS  Google Scholar 

  29. Nicholson SE, Oates AC, Harpur AG, Ziemiecki A, Wilks AF, Layton JE (1994) Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci U S A 91:2985–2988

    Article  PubMed  CAS  Google Scholar 

  30. Tian SS, Lamb P, Seidel HM, Stein RB, Rosen J (1994) Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 84:1760–1764

    PubMed  CAS  Google Scholar 

  31. Shimoda K, Feng J, Murakami H et al (1997) Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood 90:597–604

    PubMed  CAS  Google Scholar 

  32. Rodig SJ, Meraz MA, White JM et al (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373–383

    Article  PubMed  CAS  Google Scholar 

  33. Parganas E, Wang D, Stravopodis D et al (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395

    Article  PubMed  CAS  Google Scholar 

  34. Dong F, van Buitenen C, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP (1993) Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol 13:7774–7781

    PubMed  CAS  Google Scholar 

  35. Ziegler SF, Bird TA, Morella KK, Mosley B, Gearing DP, Baumann H (1993) Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol Cell Biol 13:2384–2390

    PubMed  CAS  Google Scholar 

  36. Fukunaga R, Ishizaka-Ikeda E, Nagata S (1993) Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74:1079–1087

    Article  PubMed  CAS  Google Scholar 

  37. Nicholson SE, Novak U, Ziegler SF, Layton JE (1995) Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK. Blood 86:3698–3704

    PubMed  CAS  Google Scholar 

  38. Tanner JW, Chen W, Young RL, Longmore GD, Shaw AS (1995) The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol Chem 270:6523–6530

    Article  PubMed  CAS  Google Scholar 

  39. Yoshikawa A, Murakami H, Nagata S (1995) Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor. EMBO J 14:5288–5296

    PubMed  CAS  Google Scholar 

  40. Akbarzadeh S, Ward AC, McPhee DO, Alexander WS, Lieschke GJ, Layton JE (2002) Tyrosine residues of the granulocyte colony-stimulating factor receptor transmit proliferation and differentiation signals in murine bone marrow cells. Blood 99:879–887

    Article  PubMed  CAS  Google Scholar 

  41. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655

    Article  PubMed  CAS  Google Scholar 

  42. Tian SS, Tapley P, Sincich C, Stein RB, Rosen J, Lamb P (1996) Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of JAKs, STAT5, and/or STAT3 are required for regulation of three distinct classes of immediate early genes. Blood 88:4435–4444

    PubMed  CAS  Google Scholar 

  43. Chakraborty A, Dyer KF, Cascio M, Mietzner TA, Tweardy DJ (1999) Identification of a novel Stat3 recruitment and activation motif within the granulocyte colony-stimulating factor receptor. Blood 93:15–24

    PubMed  CAS  Google Scholar 

  44. Ward AC, Hermans MH, Smith L et al (1999) Tyrosine-dependent and -independent mechanisms of STAT3 activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration. Blood 93:113–124

    PubMed  CAS  Google Scholar 

  45. Shimozaki K, Nakajima K, Hirano T, Nagata S (1997) Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J Biol Chem 272:25184–25189

    Article  PubMed  CAS  Google Scholar 

  46. Panopoulos AD, Bartos D, Zhang L, Watowich SS (2002) Control of myeloid-specific integrin alpha Mbeta 2 (CD11b/CD18) expression by cytokines is regulated by Stat3-dependent activation of PU.1. J Biol Chem 277:19001–19007

    Article  PubMed  CAS  Google Scholar 

  47. McLemore ML, Grewal S, Liu F et al (2001) STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity 14:193–204

    Article  PubMed  CAS  Google Scholar 

  48. de Koning JP, Soede-Bobok AA, Schelen AM et al (1998) Proliferation signaling and activation of Shc, p21Ras, and Myc via tyrosine 764 of human granulocyte colony-stimulating factor receptor. Blood 91:1924–1933

    PubMed  Google Scholar 

  49. de Koning JP, Schelen AM, Dong F et al (1996) Specific involvement of tyrosine 764 of human granulocyte colony-stimulating factor receptor in signal transduction mediated by p145/Shc/GRB2 or p90/GRB2 complexes. Blood 87:132–140

    PubMed  Google Scholar 

  50. Ward AC, Smith L, de Koning JP, van Aesch Y, Touw IP (1999) Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells. J Biol Chem 274:14956–14962

    Article  PubMed  CAS  Google Scholar 

  51. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA (1993) Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51

    Article  PubMed  CAS  Google Scholar 

  52. Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ (1994) Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc Natl Acad Sci U S A 91:4683–4687

    Article  PubMed  CAS  Google Scholar 

  53. Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PA (1998) The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor. Biochem Biophys Res Commun 251:117–123

    Article  PubMed  CAS  Google Scholar 

  54. Dong F, Larner AC (2000) Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the Janus kinases. Blood 95:1656–1662

    PubMed  CAS  Google Scholar 

  55. Mermel CH, McLemore ML, Liu F et al (2006) Src family kinases are important negative regulators of G-CSF-dependent granulopoiesis. Blood 108:2562–2568

    Article  PubMed  CAS  Google Scholar 

  56. Wormald S, Hilton DJ (2004) Inhibitors of cytokine signal transduction. J Biol Chem 279:821–824

    Article  PubMed  CAS  Google Scholar 

  57. Hortner M, Nielsch U, Mayr LM, Johnston JA, Heinrich PC, Haan S (2002) Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction. J Immunol 169:1219–1227

    PubMed  CAS  Google Scholar 

  58. Irandoust MI, Aarts LH, Roovers O, Gits J, Erkeland SJ, Touw IP (2007) Suppressor of cytokine signaling 3 controls lysosomal routing of G-CSF receptor. EMBO J 26:1782–1793

    Article  PubMed  CAS  Google Scholar 

  59. Roberts AW, Robb L, Rakar S et al (2001) Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proc Natl Acad Sci U S A 98:9324–9329

    Article  PubMed  CAS  Google Scholar 

  60. Croker BA, Metcalf D, Robb L et al (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20:153–165

    Article  PubMed  CAS  Google Scholar 

  61. Auernhammer CJ, Bousquet C, Melmed S (1999) Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci U S A 96:6964–6969

    Article  PubMed  CAS  Google Scholar 

  62. Lee CK, Raz R, Gimeno R et al (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17:63–72

    Article  PubMed  CAS  Google Scholar 

  63. Tapley P, Shevde NK, Schweitzer PA et al (1997) Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 25:122–131

    PubMed  CAS  Google Scholar 

  64. Ward AC, Oomen SP, Smith L et al (2000) The SH2 domain-containing protein tyrosine phosphatase SHP-1 is induced by granulocyte colony-stimulating factor (G-CSF) and modulates signaling from the G-CSF receptor. Leukemia 14:1284–1291

    Article  PubMed  CAS  Google Scholar 

  65. Dong F, Qiu Y, Yi T, Touw IP, Larner AC (2001) The carboxyl terminus of the granulocyte colony-stimulating factor receptor, truncated in patients with severe congenital neutropenia/acute myeloid leukemia, is required for SH2-containing phosphatase-1 suppression of Stat activation. J Immunol 167:6447–6452

    PubMed  CAS  Google Scholar 

  66. Hunter MG, Avalos BR (1999) Deletion of a critical internalization domain in the G-CSFR in acute myelogenous leukemia preceded by severe congenital neutropenia. Blood 93:440–446

    PubMed  CAS  Google Scholar 

  67. Richards MK, Liu F, Iwasaki H, Akashi K, Link DC (2003) Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood 102:3562–3568

    Article  PubMed  CAS  Google Scholar 

  68. Liu F, Poursine-Laurent J, Wu HY, Link DC (1997) Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood 90:2583–2590

    PubMed  CAS  Google Scholar 

  69. Betsuyaku T, Liu F, Senior RM et al (1999) A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation. J Clin Invest 103:825–832

    Article  PubMed  CAS  Google Scholar 

  70. Nguyen-Jackson H, Panopoulos AD, Zhang H, Li HS, Watowich SS (2010) STAT3 controls the neutrophil migratory response to CXCR2 ligands by direct activation of G-CSF-induced CXCR2 expression and via modulation of CXCR2 signal transduction. Blood 115:3354–3363

    Article  PubMed  CAS  Google Scholar 

  71. Panopoulos AD, Zhang L, Snow JW et al (2006) STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108:3682–3690

    Article  PubMed  CAS  Google Scholar 

  72. Germeshausen M, Skokowa J, Ballmaier M, Zeidler C, Welte K (2008) G-CSF receptor mutations in patients with congenital neutropenia. Curr Opin Hematol 15:332–337

    Article  PubMed  CAS  Google Scholar 

  73. von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181:5183–5188

    Google Scholar 

  74. Rosenberg PS, Alter BP, Bolyard AA et al (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107:4628–4635

    Article  PubMed  CAS  Google Scholar 

  75. Skokowa J, Cario G, Uenalan M et al (2006) LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12:1191–1197

    Article  PubMed  CAS  Google Scholar 

  76. Klein C, Grudzien M, Appaswamy G et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39:86–92

    Article  PubMed  CAS  Google Scholar 

  77. Dale DC, Person RE, Bolyard AA et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96:2317–2322

    PubMed  CAS  Google Scholar 

  78. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP (1995) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333:487–493

    Article  PubMed  CAS  Google Scholar 

  79. Dong F, Dale DC, Bonilla MA et al (1997) Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia 11:120–125

    Article  PubMed  CAS  Google Scholar 

  80. Germeshausen M, Ballmaier M, Welte K (2007) Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 109:93–99

    Article  PubMed  CAS  Google Scholar 

  81. McLemore ML, Poursine-Laurent J, Link DC (1998) Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. J Clin Invest 102:483–492

    Article  PubMed  CAS  Google Scholar 

  82. Hermans MH, Antonissen C, Ward AC, Mayen AE, Ploemacher RE, Touw IP (1999) Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J Exp Med 189:683–692

    Article  PubMed  CAS  Google Scholar 

  83. Liu F, Kunter G, Krem MM et al (2008) Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 118:946–955

    PubMed  CAS  Google Scholar 

  84. Kimura A, Rieger MA, Simone JM et al (2009) The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood 114:4721–4728

    Article  PubMed  CAS  Google Scholar 

  85. Bunting KD (2007) STAT5 signaling in normal and pathologic hematopoiesis. Front Biosci 12:2807–2820

    Article  PubMed  CAS  Google Scholar 

  86. Silver RT, Tefferi A (eds) (2008) Myeloproliferative disorders: biology and management. Informa Healthcare USA, Inc., New York

    Google Scholar 

  87. Plo I, Zhang Y, Le Couedic JP et al (2009) An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia. J Exp Med 206:1701–1707

    Article  PubMed  CAS  Google Scholar 

  88. Forbes LV, Gale RE, Pizzey A, Pouwels K, Nathwani A, Linch DC (2002) An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. Oncogene 21:5981–5989

    Article  PubMed  CAS  Google Scholar 

  89. Takeda K, Noguchi K, Shi W et al (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94:3801–3804

    Article  PubMed  CAS  Google Scholar 

  90. Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–450

    Article  PubMed  CAS  Google Scholar 

  91. Meraz MA, White JM, Sheehan KC et al (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442

    Article  PubMed  CAS  Google Scholar 

  92. Kamezaki K, Shimoda K, Numata A et al (2005) Roles of Stat3 and ERK in G-CSF signaling. Stem Cells 23:252–263

    Article  PubMed  CAS  Google Scholar 

  93. Welte T, Zhang SS, Wang T et al (2003) STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci U S A 100:1879–1884

    Article  PubMed  CAS  Google Scholar 

  94. Cheers C, Haigh AM, Kelso A, Metcalf D, Stanley ER, Young AM (1988) Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun 56:247–251

    PubMed  CAS  Google Scholar 

  95. Lord BI, Molineux G, Pojda Z, Souza LM, Mermod JJ, Dexter TM (1991) Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 77:2154–2159

    PubMed  CAS  Google Scholar 

  96. Zhang H, Nguyen-Jackson H, Panopoulos AD, Li HS, Murray PJ, Watowich SS (2010) STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116:2462–2471

    Article  PubMed  CAS  Google Scholar 

  97. Hirai H, Zhang P, Dayaram T et al (2006) C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat Immunol 7:732–739

    Article  PubMed  CAS  Google Scholar 

  98. Paslin D, Norman ME (1977) Atopic dermatitis and impaired neutrophil chemotaxis in Job’s syndrome. Arch Dermatol 113:801–805

    Article  PubMed  CAS  Google Scholar 

  99. Holland SM, DeLeo FR, Elloumi HZ et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619

    Article  PubMed  CAS  Google Scholar 

  100. Mintz R, Garty BZ, Meshel T et al (2010) Reduced expression of chemoattractant receptors by polymorphonuclear leukocytes in Hyper IgE Syndrome patients. Immunol Lett 130:97–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HN-J is supported by an NIH predoctoral training grant in Cancer Immunology (T32-CA-09598-21). Related research in SSW’s laboratory has been supported by grants from the NIH (AI073587, AR059010), a Preclinical Research Agreement with Amgen Inc., and a seed grant from the Center for Stem Cell and Developmental Biology at UT M D Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie S. Watowich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Nguyen-Jackson, H.T., Zhang, H., Watowich, S.S. (2012). G-CSF Receptor Structure, Function, and Intracellular Signal Transduction. In: Molineux, G., Foote, M., Arvedson, T. (eds) Twenty Years of G-CSF. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0218-5_6

Download citation

Publish with us

Policies and ethics