Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 221))

  • 1112 Accesses

Abstract

After a compact overview of the standard mathematical presentations of the formalism of quantum mechanics using the language of C*- algebras and/or the language of Hilbert spaces we turn attention to the possible use of the language of Krein spaces.I n the context of the so-called three-Hilbert-space scenario involving the so-called PT-symmetric or quasi- Hermitian quantum models a few recent results are reviewed from this point of view, with particular focus on the quantum dynamics in the Schrödinger and Heisenberg representations.

Mathematics Subject Classification (2000).Primary 47B50; Secondary 81Q65 47N50 81Q12 47B36 46C20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Andrianov, C.M. Bender, H.F. Jones, A. Smilga and M. Znojil, eds., Proceedings of the VIIth Workshop "Quantum Physics with Non-Hermitian Operators", SIGMA 5 (2009), items 001, 005, 007, 017, 018, 039, 043, 047, 053, 064 and 069;

    Google Scholar 

  2. F. Bagarello, A. Inoue, C. Trapani, Derivations of quasi *-algebras, lnt. Jour. Math. and Math. Sci., 21 (2004), 1077-1096.

    Article  MathSciNet  Google Scholar 

  3. F. Bagarello, A. Inoue, C. Trapani, Exponentiating derivations of quasi *-algebras: possible approaches and applications, Int. Jour. Math. and Math. Sci., 17 (2005), 2805-2820.

    Article  MathSciNet  Google Scholar 

  4. F. Bagarello, Algebras of unbounded operators and physical applications: a survey, Reviews in Math. Phys, 19 (2007), 231-272.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bagarello, Pseudo-bosons, Riesz bases and coherent states, J. Math. Phys., 50 (2010), 023531, 10 pages.

    Article  MathSciNet  Google Scholar 

  6. F. Bagarello, Examples of Pseudo-bosons in quantum mechanics, Phys. Lett. A, 374 (2010), 3823-3827.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bagarello, (Regular) pseudo-bosons versus bosons, J. Phys. A, 44 (2011), 015205.

    Article  MathSciNet  Google Scholar 

  8. C.M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 80 (1998), 5243-5246.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.M. Bender, Making sense of non-hermitian Hamiltonians. Rep. Prog. Phys. 70 (2007), 947-1018, hep-th/0703096.

    Article  MathSciNet  Google Scholar 

  10. O. Bratteli and D.W. Robinson, Operator algebras and Quantum statistical mechanics, vols. 1 and 2, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  11. V. Buslaev and V. Grechi, Equivalence of unstable inharmonic oscillators and double wells. J. Phys. A: Math. Gen. 26 (1993), 5541-5549.

    Article  MATH  Google Scholar 

  12. Y.D. Chong, Li Ge, A. Douglas Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106 (2011), 093902.

    Article  Google Scholar 

  13. E.B. Davies, Linear operators and their spectra. Cambridge University Press, 2007.

    Google Scholar 

  14. J. Dieudonné, Quasi-Hermitian operators, in Proc. Int. Symp. Lin. Spaces, Perga-mon, Oxford, 1961, pp. 115-122.

    Google Scholar 

  15. P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence. J. Phys. A: Math. Theor. 40 (2007), R205-R283, hep-th/0703066.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Fring, H. Jones and M. Znojil, eds., Pseudo-Hermitian Hamiltonians in Quantum Physics VI, Journal of Physics A: Math. Theor. 41 (2008), items 240301-244027.

    Article  MathSciNet  Google Scholar 

  17. S.R. Jain and Z. Ahmed, eds., Special Issue on Non-Hermitian Hamiltonians in Quantum Physics, Pramana, Journal of Physics 73 (2009), 215-416 (= part I).

    Google Scholar 

  18. S.R. Jain and Z. Ahmed, eds., Special Issue on Non-Hermitian Hamiltonians in Quantum Physics, Pramana, Journal of Physics 73 (2009), 417-626 (= part II).

    Article  Google Scholar 

  19. R. Kretschmer and L. Szymanowski, The Interpretation of Quantum-Mechanical Models with Non-Hermitian Hamiltonians and Real Spectra, arXiv:quant-ph/0105054.

    Google Scholar 

  20. R. Kretschmer and L. Szymanowski, Quasi-Hermiticity in infinite-dimensional Hilbert spaces, Phys. Lett. A 325 (2004), 112-115.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Kretschmer and L. Szymanowski, The Hilbert-Space Structure of Non-Hermitian Theories with Real Spectra, Czech. J. Phys. 54 (2004), 71-75.

    Article  MathSciNet  Google Scholar 

  22. S. Kuru, A. Tegmen, and A. Vercin, Intertwined isospectral potentials in an arbitrary dimension, J. Math. Phys. 42 (2001), 3344-3360.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Kuru, B. Demircioglu, M. Onder, and A. Vercin, Two families of superintegrable and isospectral potentials in two dimensions, J. Math.Phys. 43 (2002), 2133-2150.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Langer, and Ch. Tretter, A Krein space approach to PT symmetry. Czechosl. J. Phys. 70 (2004), 1113-1120.

    Article  MathSciNet  Google Scholar 

  25. A. Mostafazadeh, Pseudo-Hermitian Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys., 7 (2010), 1191-1306.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Mostafazadeh, Metric Operator in Pseudo-Hermitian Quantum Mechanics and the Imaginary Cubic Potential, J. Phys. A: Math. Theor. 39 (2006), 10171-10188.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Mostafazadeh, Optical Spectral Singularities as Threshold Resonances, Phys.Rev. A 83 (2011), 045801.

    Article  Google Scholar 

  28. K.A. Samani, and M. Zarei, Intertwined Hamiltonians in two-dimensional curved spaces, Ann. of Phys. 316 (2005), 466-482.

    Article  MATH  Google Scholar 

  29. F.G. Scholtz, H.B. Geyer and F.J.W. Hahne, Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. (NY) 213 (1992), 74-108.

    Article  MathSciNet  MATH  Google Scholar 

  30. G.L. Sewell, Quantum Theory of Collective Phenomena, Oxford University Press, Oxford, 1989.

    Google Scholar 

  31. P. Siegl, The non-equivalence of pseudo-Hermiticity and presence of antilinear symmetry. PRAMANA-Journal of Physics 73 (2009), 279-287.

    Article  Google Scholar 

  32. W. Thirring, Quantum mathematical physics, Springer-Verlag, Berlin and Heidelberg, 2010.

    Google Scholar 

  33. J.P. Williams, Operators Similar to their Adjoints. Proc. Amer. Math. Soc. 20 (1969), 121-123.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.-D. Wu and M. Znojil, eds., Pseudo-Hermitian Hamiltonians in Quantum Physics IX, Int. J. Theor. Phys. 50 (2011), special issue Nr. 4, pp. 953-1333.

    Article  MathSciNet  Google Scholar 

  35. M. Znojil, Three-Hilbert-space formulation of Quantum Mechanics. SYMMETRY, INTEGRABILITY and GEOMETRY: METHODS and APPLICATIONS (SIGMA) 5 (2009), 001, 19 pages.

    Google Scholar 

  36. M. Znojil, Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian. J. Math. Phys. 50 (2009), 122105.

    Article  MathSciNet  Google Scholar 

  37. M. Znojil, On the Role of Normalization Factors and Pseudometric in Crypto-Hermitian Quantum Models. SIGMA 4 (2008), p. 001, 9 pages (arXiv: 0710.4432).

    MathSciNet  Google Scholar 

  38. M. Znojil, Time-dependent version of cryptohermitian quantum theory. Phys. Rev. D 78 (2008), 085003.

    Article  MathSciNet  Google Scholar 

  39. http://gemma.ujf.cas.cz/%7Eznojil/conf/proceedphhqp.html

  40. http://ptsymmetry.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Bagarello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Bagarello, F., Znojil, M. (2012). The Dynamical Problem for a Non Self-adjoint Hamiltonian. In: Arendt, W., Ball, J., Behrndt, J., Förster, KH., Mehrmann, V., Trunk, C. (eds) Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations. Operator Theory: Advances and Applications, vol 221. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0297-0_6

Download citation

Publish with us

Policies and ethics