Skip to main content

q-discord for Generalized Entropy Functions

  • Conference paper
  • First Online:
Geometric Methods in Physics

Part of the book series: Trends in Mathematics ((TM))

Abstract

The aim of this article is to discuss how to define quantum correlations in composite systems. Based on the notion of a quantum discord we generalize it using other entropy functions than von Neumann entropy.

Mathematics Subject Classification (2010). 81P40, 94A17, 81V80.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, England, 2000.

    MATH  Google Scholar 

  2. K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Phys. Rev. Lett. 104, 080501 (2010).

    Article  MathSciNet  Google Scholar 

  3. A. Brodutch, D.R. Terno, Phys. Rev. A 81, 062103 (2010).

    Article  MathSciNet  Google Scholar 

  4. S. Wu, U.V. Poulsen, and K. Mølmer, Phys. Rev. A 80, 032319 (2009).

    Article  Google Scholar 

  5. R. Rossignoli, N. Canosa, and L. Ciliberti, Phys. Rev. A 82, 052342 (2010).

    Article  MathSciNet  Google Scholar 

  6. H. Ollivier and W.H. Żurek, Phys. Rev. Lett. 88, 017901 (2002).

    Article  Google Scholar 

  7. L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34 6899–6905 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. W.H. Żurek, Phys. Rev. A 67, 012320 (2003).

    Article  Google Scholar 

  9. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, and B. Synak-Radtke, Phys. Rev. A 71, 062307.

    Google Scholar 

  10. C.A. Rodriguez-Rosario, K. Modi, A. Kuah, A. Shaji, and E.C.G. Sudarshan, J. Phys. A 41, 205301 (2008).

    Article  MathSciNet  Google Scholar 

  11. A. Shabani and D.A. Lidar, Phys. Rev. Lett. 102, 100402 (2009).

    Article  Google Scholar 

  12. T. Werlang, S. Souza, F.F. Fanchini, and C.J. Villas-Boas, Phys. Rev. A 80, 024103 (2009).

    Article  Google Scholar 

  13. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, and A.O. Caldeira, Phys. Rev. A. 81, 052107 (2010).

    Article  Google Scholar 

  14. M. Piani, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008).

    Article  Google Scholar 

  15. M. Piani, M. Christandl, C.E. Mora, and P. Horodecki, Phys. Rev. Lett. 102, 250503 (2009).

    Article  Google Scholar 

  16. A. Datta, A. Shaji, and C. Caves, Phys. Rev. Lett. 100, 050502 (2008).

    Article  Google Scholar 

  17. A. Datta and S. Gharibian, Phys. Rev. A 79, 042325 (2009).

    Article  Google Scholar 

  18. B.P. Lanyon, M. Barbieri, M.P. Almeida, and A.G. White, Phys. Rev. Lett. 101, 200501 (2008).

    Article  Google Scholar 

  19. B. Bylicka and D. Chruściński, Phys. Rev. A 81, 062102 (2010).

    Article  MathSciNet  Google Scholar 

  20. M. Ali, A.R.P. Rau, and G. Alber, Phys. Rev. A 81, 042105 (2010).

    Article  Google Scholar 

  21. A. Wehrl, Rev. Mod. Phys. 50, 221–260 (1978).

    Article  MathSciNet  Google Scholar 

  22. X. Hu and Z. Ye, J. Math. Phys. 47, 023502 (2006).

    Article  MathSciNet  Google Scholar 

  23. S. Abe and A.K. Rajagopal, Physica A 289, 157–164 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Yamano, Phys. Rev. E 63, 046105 (2001).

    Article  Google Scholar 

  25. S. Furuichi, K. Yanagi, K. Kuriyama, J. Math. Phys. 45 4868–4877 (2004).

    MATH  Google Scholar 

  26. S. Furuichi, J. Math. Phys. 47, 023302 (2006).

    Article  MathSciNet  Google Scholar 

  27. K.M.R. Audenaert, J. Math. Phys. 48 (2007).

    Google Scholar 

  28. P.J. Coles, Non-negative discord strengthens the subadditivity of quantum entropy functions, arXiv: 1101.1717 [quant-ph].

    Google Scholar 

  29. J. Jurkowski, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Jurkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Jurkowski, J. (2013). q-discord for Generalized Entropy Functions. In: Kielanowski, P., Ali, S., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds) Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0448-6_30

Download citation

Publish with us

Policies and ethics