Skip to main content

The Biology of Toll-Like Receptors and NOD-Like Receptors: The Toggles of Inflammation

  • Chapter
  • First Online:
Genomics of Pattern Recognition Receptors

Abstract

We start this chapter with a brief description of what pattern recognition receptors are. Here, we denote the place of pattern recognition receptors in modern conception of immunology and write why we have chosen oncological and cardiological disorders to be considered in this book. Thereafter, we regard the structure and functioning of the most investigated group of pattern recognition receptors, namely Toll-like receptors (TLRs). Firstly, we consider the classification and structure of TLRs, then we depict a scheme of their interactions with other molecules downstream in the relevant signaling pathway, consider ligands which activate this pathway, and, finally, denote cells and organs where process of TLR signaling takes place. In general, we describe here the whole conception of TLRs in the human body. The last part of the chapter is devoted to the second deeply investigated group of pattern recognition receptors, namely NOD-like receptors. However, here we focus only on NOD1 and NOD2 due to their special relevance for the applied genomics. We describe the structure of these receptors, then we consider cells where they are expressed, their ligands, and, finally, depict a scheme of their functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    Article  PubMed  CAS  Google Scholar 

  2. Elinav E, Strowig T, Henao-Mejia J, Flavell RA (2011) Regulation of the antimicrobial response by NLR proteins. Immunity 34(5):665–679

    Article  PubMed  CAS  Google Scholar 

  3. Osorio F, Reis E, Sousa C (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34(5):651–664

    Article  PubMed  CAS  Google Scholar 

  4. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    Article  PubMed  CAS  Google Scholar 

  5. Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59(10):791–808

    Article  PubMed  CAS  Google Scholar 

  6. Fukata M, Chen A, Klepper A et al (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology 131(3):862–877

    Article  PubMed  CAS  Google Scholar 

  7. Brown SL, Riehl TE, Walker MR et al (2007) Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 117(1):258–269

    Article  PubMed  CAS  Google Scholar 

  8. Kim D, Kim MA, Cho IH et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282(20):14975–14983

    Article  PubMed  CAS  Google Scholar 

  9. Rakoff-Nahoum S, Medzhitov R (2008) Role of toll-like receptors in tissue repair and tumorigenesis. Biochemistry (Mosc) 73(5):555–561

    Article  CAS  Google Scholar 

  10. Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59:791–808

    Article  PubMed  CAS  Google Scholar 

  11. Hashimoto C, Hudson KL, Anderson KV (1988) The toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  PubMed  CAS  Google Scholar 

  12. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K et al (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124

    Article  PubMed  CAS  Google Scholar 

  13. Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in toll-like receptors. Trends Immunol 24:528–533

    Article  PubMed  CAS  Google Scholar 

  14. Kim HM, Park BS, Kim J-I, Kim SE, Lee J, Oh SC et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130:906–917

    Article  PubMed  CAS  Google Scholar 

  15. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM et al (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320(5874):379–381

    Article  PubMed  CAS  Google Scholar 

  16. Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Davies DR et al (2006) The molecular structure of the TLR3 extracellular domain. J Endotoxin Res 12:375–378

    Article  PubMed  CAS  Google Scholar 

  17. Takada E, Okahira S, Sasai M, Funami K, Seya T, Matsumoto M (2007) C-terminal LRRs of human Toll-like receptor 3 control receptor dimerization and signal transmission. Mol Immunol 44:3633–3640

    Article  PubMed  CAS  Google Scholar 

  18. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  19. Huyton T, Rossjohn J, Wilce M (2007) Toll-like receptors: structural pieces of a curve-shaped puzzle. Immunol Cell Biol 85:406–410

    Article  PubMed  CAS  Google Scholar 

  20. Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29:182–191

    Article  PubMed  CAS  Google Scholar 

  21. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  CAS  Google Scholar 

  22. Pålsson-McDermott EM, O’Neill LA (2007) Building an immune system from nine domains. Biochem Soc Trans 35:1437–1444

    Article  PubMed  Google Scholar 

  23. Yamamoto M, Takeda K, Akira S (2004) TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 40:861–868

    Article  PubMed  CAS  Google Scholar 

  24. Takeuchi O, Akira S (2001) Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 1:625–635

    Article  PubMed  CAS  Google Scholar 

  25. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6:644–658

    Article  PubMed  CAS  Google Scholar 

  26. Wong Y, Sethu C, Louafi F, Hossain P. lipopolysaccharide regulation of toll-like receptor-4 and matrix metalloprotease-9 in human primary corneal fibroblast cells. Invest Ophthalmol Vis Sci. 2011 Jan 10. [Epub ahead of print]

    Google Scholar 

  27. Zhu J, Mohan C (2010) Toll-like receptor signaling pathways–therapeutic opportunities. Mediators Inflamm 2010:781235

    Article  PubMed  CAS  Google Scholar 

  28. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  29. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z et al (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    PubMed  CAS  Google Scholar 

  30. Tapping RI, Tobias PS (2003) Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res 9:264–268

    PubMed  CAS  Google Scholar 

  31. Wyllie DH, Kiss-Toth E, Visintin A, Smith SC, Boussouf S, Segal DM et al (2000) Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol 165:7125–7132

    PubMed  CAS  Google Scholar 

  32. Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT et al (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884

    PubMed  CAS  Google Scholar 

  33. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV et al (2007) Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A. 104:18631–18635

    Article  PubMed  CAS  Google Scholar 

  34. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR et al (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736

    Article  PubMed  CAS  Google Scholar 

  35. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD et al (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

    Article  PubMed  CAS  Google Scholar 

  36. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274:17406–17409

    Article  PubMed  CAS  Google Scholar 

  37. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Grampositive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1–5

    PubMed  CAS  Google Scholar 

  38. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H et al (2003) Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 171:417–425

    PubMed  CAS  Google Scholar 

  39. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999) Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163:3920–3927

    PubMed  CAS  Google Scholar 

  40. Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM (2002) Cutting edge: immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 168:1533–1537

    PubMed  CAS  Google Scholar 

  41. Ray A, Chatterjee NS, Bhattacharya SK, Biswas T (2003) Porin of Shigella dysenteriae enhances mRNA levels for Toll-like receptor 2 and MyD88, up-regulates CD80 of murine macrophage, and induces the release of interleukin-12. FEMS Immunol Med Microbiol 39:213–219

    Article  PubMed  CAS  Google Scholar 

  42. Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM et al (1999) Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 163:2382–2386

    PubMed  CAS  Google Scholar 

  43. Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ et al (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166:15–19

    PubMed  CAS  Google Scholar 

  44. Coelho PS, Klein A, Talvani A, Coutinho SF, Takeuchi O, Akira S et al (2002) Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-gamma-primed-macrophages. J Leukoc Biol 71:837–844

    PubMed  CAS  Google Scholar 

  45. Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP et al (2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736

    Article  PubMed  CAS  Google Scholar 

  46. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R et al (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A. 101:1315–1320

    Article  PubMed  CAS  Google Scholar 

  47. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT et al (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588–4596

    Article  PubMed  CAS  Google Scholar 

  48. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I et al (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  PubMed  CAS  Google Scholar 

  49. Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC et al (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69:1477–1482

    Article  PubMed  CAS  Google Scholar 

  50. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168:5989–5992

    PubMed  CAS  Google Scholar 

  51. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H et al (2001) Endocytosed HSP60 s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  PubMed  CAS  Google Scholar 

  52. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  PubMed  CAS  Google Scholar 

  53. Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K (2009) Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res 10:31

    Article  PubMed  CAS  Google Scholar 

  54. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853

    Article  PubMed  CAS  Google Scholar 

  55. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  56. Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR et al (2002) Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem 277:6830–6837

    Article  PubMed  CAS  Google Scholar 

  57. Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T et al (2006) Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 45:8657–8664

    Article  PubMed  CAS  Google Scholar 

  58. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR et al (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    Article  PubMed  CAS  Google Scholar 

  59. Satta N, Dunoyer-Geindre S, Reber G, Fish RJ, Boehlen F, Kruithof EK et al (2007) The role of TLR2 in the inflammatory activation of mouse fibroblasts by human antiphospholipid antibodies. Blood 109:1507–1514

    Article  PubMed  CAS  Google Scholar 

  60. Cheng N, He R, Tian J, Ye PP, Ye RD (2008) Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol 181:22–26

    PubMed  CAS  Google Scholar 

  61. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M et al (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233

    Article  PubMed  CAS  Google Scholar 

  62. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  PubMed  CAS  Google Scholar 

  63. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al (2002) Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med 195:99–111

    Article  PubMed  CAS  Google Scholar 

  64. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  65. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550

    Article  PubMed  CAS  Google Scholar 

  66. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  PubMed  CAS  Google Scholar 

  67. Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166:4620–4626

    PubMed  CAS  Google Scholar 

  68. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401

    Article  PubMed  CAS  Google Scholar 

  69. Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR (2002) Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A. 99:2281–2286

    Article  PubMed  CAS  Google Scholar 

  70. Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, Nishijima M (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275:2251–2254

    Article  PubMed  CAS  Google Scholar 

  71. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15:774–780

    Article  PubMed  CAS  Google Scholar 

  72. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 164:558–561

    PubMed  CAS  Google Scholar 

  73. Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H et al (2006) Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 281:22545–22553

    Article  PubMed  CAS  Google Scholar 

  74. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    Article  PubMed  CAS  Google Scholar 

  75. Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG (2003) Neutrophil elastase up-regulates interleukin-8 via Toll-like receptor 4. FEBS Lett 544:129–132

    Article  PubMed  CAS  Google Scholar 

  76. Pierangeli SS, Vega-Ostertag ME, Raschi E, Liu X, Romay-Penabad Z, De Micheli V et al (2007) Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis 66:1327–1333

    Article  PubMed  CAS  Google Scholar 

  77. Curran CS, Demick KP, Mansfield JM (2006) Lactoferrin activates macrophages via TLR4-dependent and—independent signaling pathways. Cell Immunol 242:23–30

    Article  PubMed  CAS  Google Scholar 

  78. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O et al (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029

    Article  PubMed  CAS  Google Scholar 

  79. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM et al (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847–2859

    Article  PubMed  CAS  Google Scholar 

  80. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol 167:2887–2894

    PubMed  CAS  Google Scholar 

  81. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J et al (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233

    Article  PubMed  CAS  Google Scholar 

  82. Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparin sulfate by Toll-like receptor 4. J Immunol 168:5233–5239

    PubMed  CAS  Google Scholar 

  83. Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC et al (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104:3103–3108

    Article  PubMed  CAS  Google Scholar 

  84. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  PubMed  CAS  Google Scholar 

  85. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  86. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A et al (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  PubMed  CAS  Google Scholar 

  87. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A. 97:13766–13771

    Article  PubMed  CAS  Google Scholar 

  88. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  PubMed  CAS  Google Scholar 

  89. Hurst J, Prinz N, Lorenz M, Bauer S, Chapman J, Lackner KJ et al (2009) TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1beta and caspase-1 in monocytes and dendritic cells. Immunobiology 214:683–691

    Article  PubMed  CAS  Google Scholar 

  90. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  PubMed  CAS  Google Scholar 

  91. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  92. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S et al (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201:19–25

    Article  PubMed  CAS  Google Scholar 

  93. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  PubMed  CAS  Google Scholar 

  94. Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R et al (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004

    PubMed  CAS  Google Scholar 

  95. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T et al (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    PubMed  CAS  Google Scholar 

  96. Uehara A, Takada H (2007) Functional TLRs and NODs in human gingival fibroblasts. J Dent Res 86:249–254

    Article  PubMed  CAS  Google Scholar 

  97. Mayer AK, Muehmer M, Mages J, Gueinzius K, Hess C, Heeg K et al (2007) Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol 178:3134–3142

    PubMed  CAS  Google Scholar 

  98. Fitzner N, Clauberg S, Essmann F, Liebmann J, Kolb-Bachofen V (2008) Human skin endothelial cells can express all 10 TLR genes and respond to respective ligands. Clin Vaccine Immunol 15:138–146

    Article  PubMed  CAS  Google Scholar 

  99. Mempel M, Voelcker V, Köllisch G, Plank C, Rad R, Gerhard M et al (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121:1389–1396

    Article  PubMed  CAS  Google Scholar 

  100. Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114:174–182

    Article  PubMed  CAS  Google Scholar 

  101. Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y et al (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113:379–385

    Article  PubMed  CAS  Google Scholar 

  102. Narita M, Watanabe N, Yamahira A, Hashimoto S, Tochiki N, Saitoh A et al (2009) A leukemic plasmacytoid dendritic cell line, PMDC05, with the ability to secrete IFN-alpha by stimulation via Toll-like receptors and present antigens to naïve T cells. Leuk Res 33:1224–1232

    Article  PubMed  CAS  Google Scholar 

  103. Li Y, Li H, Zhang Y, Sun X, Hanley GA, LeSage G et al (2010) Toll-like receptor 2 is required for opioids-induced neuronal apoptosis. Biochem Biophys Res Commun 391:426–430

    Article  PubMed  CAS  Google Scholar 

  104. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 83:196–198

    Article  PubMed  CAS  Google Scholar 

  105. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166:249–255

    PubMed  CAS  Google Scholar 

  106. Månsson A, Fransson M, Adner M, Benson M, Uddman R, Björnsson S et al (2010) TLR3 in human eosinophils: functional effects and decreased expression during allergic rhinitis. Int Arch Allergy Immunol 151:118–128

    Article  PubMed  CAS  Google Scholar 

  107. Préhaud C, Mégret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79:12893–12904

    Article  PubMed  CAS  Google Scholar 

  108. Pivarcsi A, Bodai L, Réthi B, Kenderessy-Szabó A, Koreck A, Széll M et al (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15:721–730

    Article  PubMed  CAS  Google Scholar 

  109. Yavuz S, Elbir Y, Tulunay A, Eksioglu-Demiralp E, Direskeneli H (2008) Differential expression of toll-like receptor 6 on granulocytes and monocytes implicates the role of microorganisms in Behcet’s disease etiopathogenesis. Rheumatol Int 28:401–406

    Article  PubMed  CAS  Google Scholar 

  110. Büchau AS, Schauber J, Hultsch T, Stuetz A, Gallo RL (2008) Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes. J Invest Dermatol 128:2646–2654

    Article  PubMed  CAS  Google Scholar 

  111. Uehara A, Fujimoto Y, Fukase K, Takada H (2007) Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44:3100–3111

    Article  PubMed  CAS  Google Scholar 

  112. Hart OM, Athie-Morales V, O’Connor GM, Gardiner CM (2005) TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol 175:1636–1642

    PubMed  CAS  Google Scholar 

  113. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T et al (2005) Toll-like receptor 8-mediated reversal of CD4 + regulatory T cell function. Science 309:1380–1384

    Article  PubMed  CAS  Google Scholar 

  114. Steenholdt C, Andresen L, Pedersen G, Hansen A, Brynskov J (2009) Expression and function of toll-like receptor 8 and Tollip in colonic epithelial cells from patients with inflammatory bowel disease. Scand J Gastroenterol 44:195–204

    Article  PubMed  CAS  Google Scholar 

  115. Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lü J et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175:209–215

    Article  PubMed  CAS  Google Scholar 

  116. Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K et al (2003) Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 171(8):3977–3982

    PubMed  CAS  Google Scholar 

  117. Bell MP, Svingen PA, Rahman MK, Xiong Y, Faubion WA Jr (2007) FOXP3 regulates TLR10 expression in human T regulatory cells. J Immunol 179:1893–1900

    PubMed  CAS  Google Scholar 

  118. Mahanonda R, Sa-Ard-Iam N, Eksomtramate M, Rerkyen P, Phairat B, Schaecher KE et al (2009) Cigarette smoke extract modulates human beta-defensin-2 and interleukin-8 expression in human gingival epithelial cells. J Periodontal Res 44:557–564

    Article  PubMed  CAS  Google Scholar 

  119. Köllisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J et al (2005) Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 114:531–541

    Article  PubMed  CAS  Google Scholar 

  120. Livengood AJ, Wu CC, Carson DA (2007) Opposing roles of RNA receptors TLR3 and RIG-I in the inflammatory response to double-stranded RNA in a Kaposi’s sarcoma cell line. Cell Immunol 249:55–62

    Article  PubMed  CAS  Google Scholar 

  121. Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V, Wong PP et al (2008) Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe 4:470–483

    Article  PubMed  CAS  Google Scholar 

  122. Adepoju LJ, Geiger JD (2010) Antitumor activity of polyuridylic acid in human soft tissue and bone sarcomas. J Surg Res 164:e107–14

    Article  PubMed  CAS  Google Scholar 

  123. Smith TJ, Yamamoto K, Kurata M, Yukimori A, Suzuki S, Umeda S et al (2010) Differential expression of Toll-like receptors in follicular lymphoma, diffuse large B-cell lymphoma and peripheral T-cell lymphoma. Exp Mol Pathol 89:284–290

    Article  PubMed  CAS  Google Scholar 

  124. Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A (2003) The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 102:956–963

    Article  PubMed  Google Scholar 

  125. Bohnhorst J, Rasmussen T, Moen SH, Fløttum M, Knudsen L, Børset M et al (2006) Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia 20:1138–1144

    Article  PubMed  CAS  Google Scholar 

  126. Muzio M, Scielzo C, Bertilaccio MT, Frenquelli M, Ghia P, Caligaris-Cappio F (2009) Expression and function of toll like receptors in chronic lymphocytic leukaemia cells. Br J Haematol 144:507–516

    Article  PubMed  CAS  Google Scholar 

  127. Tichomirowa MA, Theodoropoulou M, Daly AF, Yassouridis A, Hansen S, Lu J et al (2008) Toll-like receptor-4 is expressed in meningiomas and mediates the antiproliferative action of paclitaxel. Int J Cancer 123:1956–1963

    Article  PubMed  CAS  Google Scholar 

  128. Meng Y, Kujas M, Marie Y, Paris S, Thillet J, Delattre JY et al (2008) Expression of TLR9 within human glioblastoma. J Neurooncol 88:19–25

    Article  PubMed  Google Scholar 

  129. Goto Y, Arigami T, Kitago M, Nguyen SL, Narita N, Ferrone S et al (2008) Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 7:3642–3653

    Article  PubMed  CAS  Google Scholar 

  130. Morikawa T, Sugiyama A, Kume H, Ota S, Kashima T, Tomita K et al (2007) Identification of Toll-like receptor 3 as a potential therapeutic target in clear cell renal cell carcinoma. Clin Cancer Res 13:5703–5709

    Article  PubMed  CAS  Google Scholar 

  131. Schwartz MJ, Liu H, Hwang DH, Kawamoto H, Scherr DS (2009) Antitumor effects of an imidazoquinoline in renal cell carcinoma. Urology 73:1156–1162

    Article  PubMed  Google Scholar 

  132. Li X, Gong ZY, Li H, Wei Q, Shi M, Yang YR (2004) Study on Toll-like receptors expression and cytokine production induced by bacillus Calmette-Guerin in human bladder cancer cell. Zhonghua Wai Ke Za Zhi 42:177–181

    PubMed  Google Scholar 

  133. McCall KD, Harii N, Lewis CJ, Malgor R, Kim WB, Saji M et al (2007) High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology 148:4226–4237

    Article  PubMed  CAS  Google Scholar 

  134. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A et al (2009) Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res 69:3105–3113

    Article  PubMed  CAS  Google Scholar 

  135. Szczepanski M, Stelmachowska M, Stryczynski L, Golusinski W, Samara H, Mozer-Lisewska I et al (2007) Assessment of expression of toll-like receptors 2, 3 and 4 in laryngeal carcinoma. Eur Arch Otorhinolaryngol 264:525–530

    Article  PubMed  Google Scholar 

  136. He W, Liu Q, Wang L, Chen W, Li N, Cao X (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850–2859

    Article  PubMed  CAS  Google Scholar 

  137. Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R et al (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 120:1285–1297

    Article  PubMed  CAS  Google Scholar 

  138. Chattopadhyay I, Singh A, Phukan R, Purkayastha J, Kataki A, Mahanta J et al (2010) Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India. Mutat Res 696:130–138

    Article  PubMed  CAS  Google Scholar 

  139. Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H et al (2004) Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 66:1465–1477

    Article  PubMed  CAS  Google Scholar 

  140. Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M (2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295:179–185

    Article  PubMed  CAS  Google Scholar 

  141. Niedzielska I, Niedzielski Z, Tkacz M, Orawczyk T, Ziaja K, Starzewski J et al (2009) Toll-like receptors and the tendency of normal mucous membrane to transform to polyp or colorectal cancer. J Physiol Pharmacol 60(Suppl 1):65–71

    PubMed  Google Scholar 

  142. Rayburn ER, Wang W, Zhang R, Wang H (2007) Experimental therapy for colon cancer: anti-cancer effects of TLR9 agonism, combination with other therapeutic modalities, and dependence upon p53. Int J Oncol 30:1511–1519

    PubMed  CAS  Google Scholar 

  143. Morse DL, Balagurunathan Y, Hostetter G, Trissal M, Tafreshi NK, Burke N et al (2010) Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray. Biochem Pharmacol 80:748–754

    Article  PubMed  CAS  Google Scholar 

  144. Shojaei H, Oberg HH, Juricke M, Marischen L, Kunz M, Mundhenke C et al (2009) Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 69:8710–8717

    Article  PubMed  CAS  Google Scholar 

  145. Zhang JJ, Wu HS, Wang L, Tian Y, Zhang JH, Wu HL (2010) Expression and significance of TLR4 and HIF-1alpha in pancreatic ductal adenocarcinoma. World J Gastroenterol 16:2881–2888

    Article  PubMed  CAS  Google Scholar 

  146. Pratesi G, Petrangolini G, Tortoreto M, Addis A, Belluco S, Rossini A et al (2005) Therapeutic synergism of gemcitabine and CpG-oligodeoxynucleotides in an orthotopic human pancreatic carcinoma xenograft. Cancer Res 65:6388–6393

    Article  PubMed  CAS  Google Scholar 

  147. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892

    Article  PubMed  CAS  Google Scholar 

  148. Chew V, Tow C, Teo M, Wong HL, Chan J, Gehring A et al (2010) Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 52:370–379

    Article  PubMed  CAS  Google Scholar 

  149. Chang S, Kodys K, Szabo G (2010) Impaired expression and function of toll-like receptor 7 in hepatitis C virus infection in human hepatoma cells. Hepatology 51:35–42

    Article  PubMed  CAS  Google Scholar 

  150. Yang H, Zhou H, Feng P, Zhou X, Wen H, Xie X et al (2010) Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J Exp Clin Cancer Res 29:92

    Article  PubMed  CAS  Google Scholar 

  151. Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF (2009) Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother 58:1375–1385

    Article  PubMed  CAS  Google Scholar 

  152. Allhorn S, Böing C, Koch AA, Kimmig R, Gashaw I (2008) TLR3 and TLR4 expression in healthy and diseased human endometrium. Reprod Biol Endocrinol 6:40

    Article  PubMed  CAS  Google Scholar 

  153. Yu L, Wang L, Li M, Zhong J, Wang Z, Chen S (2010) Expression of toll-like receptor 4 is down-regulated during progression of cervical neoplasia. Cancer Immunol Immunother 59:1021–1028

    Article  PubMed  CAS  Google Scholar 

  154. Mittal D, Saccheri F, Vénéreau E, Pusterla T, Bianchi ME, Rescigno M (2010) TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 29:2242–2252

    Article  PubMed  CAS  Google Scholar 

  155. Lee JW, Choi JJ, Seo ES, Kim MJ, Kim WY, Choi CH et al (2007) Increased toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog 46:941–947

    Article  PubMed  CAS  Google Scholar 

  156. Takeyama K, Mitsuzawa H, Shimizu T, Konishi M, Nishitani C, Sano H et al (2006) Prostate cell lines secrete IL-8 in response to Mycoplasma hominis through Toll-like receptor 2-mediated mechanism. Prostate 66:386–391

    Article  PubMed  CAS  Google Scholar 

  157. Galli R, Starace D, Busà R, Angelini DF, Paone A, De Cesaris P et al (2010) TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J Immunol 184:6658–6669

    Article  PubMed  CAS  Google Scholar 

  158. Kundu SD, Lee C, Billips BK, Habermacher GM, Zhang Q, Liu V et al (2008) The toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. Prostate 68:223–229

    Article  PubMed  CAS  Google Scholar 

  159. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892

    Article  PubMed  CAS  Google Scholar 

  160. Song J, Abraham SN (2008) TLR-mediated immune responses in the urinary tract. Curr Opin Microbiol 11:66–73

    Article  PubMed  CAS  Google Scholar 

  161. Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosegawa T (2008) Pancreatic stellate cells express Toll-like receptors. J Gastroenterol 43:352–362

    Article  PubMed  CAS  Google Scholar 

  162. Shibasaki S, Imagawa A, Tauriainen S, Iino M, Oikarinen M, Abiru H et al (2010) Expression of toll-like receptors in the pancreas of recent-onset fulminant type 1 diabetes. Endocr J 57:211–219

    Article  PubMed  CAS  Google Scholar 

  163. Fukata M, Chen AL, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS et al (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology 131:862–877

    Article  PubMed  CAS  Google Scholar 

  164. Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF et al (2007) Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 117:258–269

    Article  PubMed  CAS  Google Scholar 

  165. Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983

    Article  PubMed  CAS  Google Scholar 

  166. Rakoff-Nahoum S, Medzhitov R (2008) Role of toll-like receptors in tissue repair and tumorigenesis. Biochemistry (Mosc) 73:555–561

    Article  CAS  Google Scholar 

  167. Harton JA, Linhoff MW, Zhang J, Ting JP (2002) Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol 169:4088–4093

    PubMed  CAS  Google Scholar 

  168. Inohara N, G Nuñez (2001) The NOD a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20:6473–6481

    Article  PubMed  CAS  Google Scholar 

  169. Chen G, Shaw MH, Kim YG, Nuñez G (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398

    Article  PubMed  CAS  Google Scholar 

  170. Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420:1–16

    Article  PubMed  CAS  Google Scholar 

  171. Kanneganti TD, Lamkanfi M, Núñez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559

    Article  PubMed  CAS  Google Scholar 

  172. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S et al (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560–14567

    Article  PubMed  CAS  Google Scholar 

  173. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818

    Article  PubMed  CAS  Google Scholar 

  174. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F et al (2002) Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 277:41701–41705

    Google Scholar 

  175. Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF et al (2003) Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut 52:1591–1597

    Article  PubMed  CAS  Google Scholar 

  176. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281:2005–2011

    Article  PubMed  CAS  Google Scholar 

  177. Uehara A, Fujimoto Y, Fukase K, Takada H (2007) Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44:3100–3111

    Article  PubMed  CAS  Google Scholar 

  178. Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK (2005) Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition. J Cell Biol 170:21–26

    Article  PubMed  CAS  Google Scholar 

  179. Kufer TA, Kremmer E, Adam AC, Philpott DJ, Sansonetti PJ (2008) The pattern recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 10:477–486

    PubMed  CAS  Google Scholar 

  180. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L et al (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707

    Article  PubMed  CAS  Google Scholar 

  181. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587

    Article  PubMed  CAS  Google Scholar 

  182. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872

    Article  PubMed  CAS  Google Scholar 

  183. Ratner AJ, Aguilar JL, Shchepetov M, Lysenko ES, Weiser JN (2007) Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cell Microbiol 9:1343–1351

    Article  PubMed  CAS  Google Scholar 

  184. Marina-García N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ et al (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180:4050–4057

    PubMed  Google Scholar 

  185. Ismair MG, Vavricka SR, Kullak-Ublick GA, Fried M, Mengin-Lecreulx D, Girardin SE (2006) hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can J Physiol Pharmacol 84:1313–1319

    Article  PubMed  CAS  Google Scholar 

  186. Shaw PJ, Lamkanfi M, Kanneganti TD (2010) NOD-like receptor (NLR) signaling beyond the inflammasome. Eur J Immunol 40:624–627

    Article  PubMed  CAS  Google Scholar 

  187. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP et al (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5:1166–1174

    Article  PubMed  CAS  Google Scholar 

  188. Welter-Stahl L, Ojcius DM, Viala J, Girardin S, Liu W, Delarbre C et al (2006) Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 8:1047–1057

    Article  PubMed  CAS  Google Scholar 

  189. Kim JG, Lee SJ, Kagnoff MF (2004) Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect Immun 72:1487–1495

    Article  PubMed  CAS  Google Scholar 

  190. Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR et al (2001) CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep 2:736–742

    Article  PubMed  CAS  Google Scholar 

  191. Zilbauer M, Dorrell N, Elmi A, Lindley KJ, Schüller S, Jones HE et al (2007) A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol 9:2404–2416

    Article  PubMed  CAS  Google Scholar 

  192. Tanabe T, Ishige I, Suzuki Y, Aita Y, Furukawa A, Ishige Y et al (2006) Sarcoidosis and NOD1 variation with impaired recognition of intracellular Propionibacterium acnes. Biochim Biophys Acta 1762:794–801

    Article  PubMed  CAS  Google Scholar 

  193. Travassos LH, Carneiro LA, Girardin SE, Boneca IG, Lemos R, Bozza MT et al (2005) Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem 280:36714–36718

    Article  PubMed  CAS  Google Scholar 

  194. Hasegawa M, Yang K, Hashimoto M, Park JH, Kim YG, Fujimoto Y et al (2006) Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J Biol Chem 281:29054–29063

    Article  PubMed  CAS  Google Scholar 

  195. Opitz B, Püschel A, Beermann W, Hocke AC, Förster S, Schmeck B et al (2006) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176:484–490

    PubMed  CAS  Google Scholar 

  196. Rosenstiel P, Hellmig S, Hampe J, Ott S, Till A, Fischbach W et al (2006) Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of Helicobacter pylori infection. Cell Microbiol 8:1188–1198

    Article  PubMed  CAS  Google Scholar 

  197. Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, de Jong DJ, Langenberg DM et al (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1:279–285

    Article  PubMed  CAS  Google Scholar 

  198. Opitz B, Püschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S et al (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279:36426–36432

    Article  PubMed  CAS  Google Scholar 

  199. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124:993–1000

    Article  PubMed  CAS  Google Scholar 

  200. Sterka D Jr, Marriott I (2006) Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. J Neuroimmunol 179:65–75

    Article  PubMed  CAS  Google Scholar 

  201. Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DM, van Crevel R et al (2007) Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol 82:1011–1018

    Article  PubMed  CAS  Google Scholar 

  202. Ferwerda B, McCall MB, de Vries MC, Hopman J, Maiga B, Dolo A et al (2009) Caspase-12 and the inflammatory response to Yersinia pestis. PLoS ONE 4:e6870

    Article  PubMed  CAS  Google Scholar 

  203. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734

    Article  PubMed  CAS  Google Scholar 

  204. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  PubMed  CAS  Google Scholar 

  205. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62

    Article  PubMed  CAS  Google Scholar 

  206. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH et al (2009) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10:1073–1080

    Article  PubMed  CAS  Google Scholar 

  207. Shaw MH, Reimer T, Sánchez-Valdepeñas C, Warner N, Kim YG, Fresno M et al (2009) T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol 10:1267–1274

    Article  PubMed  CAS  Google Scholar 

  208. Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S et al (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530

    Article  PubMed  CAS  Google Scholar 

  209. Kutikhin AG (2011) Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Hum Immunol. 72(11):1095–1116

    Article  PubMed  CAS  Google Scholar 

  210. Kutikhin AG (2011) Impact of Toll-like receptor 4 polymorphisms on risk of cancer. Hum Immunol. 72(2):193–206

    Article  PubMed  CAS  Google Scholar 

  211. Kutikhin AG (2011) Role of NOD1/CARD4 and NOD2/CARD15 gene polymorphisms in cancer etiology. Hum Immunol. 72(10):955–968

    Article  PubMed  CAS  Google Scholar 

  212. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNA. Nat Rev Genet 5:396–400

    Article  PubMed  CAS  Google Scholar 

  213. Li Y, Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10:65–71

    Article  PubMed  CAS  Google Scholar 

  214. Virtue A, Wang H, Yang XF (2012) MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 5:66

    Article  PubMed  CAS  Google Scholar 

  215. Olivieri F, Rippo MR, Prattichizzo F, Babini L, Graciotti L, Recchioni R et al (2013) Toll like receptor signaling in “inflammaging”:microRNA as new players. Immun Ageing 10:11

    Article  PubMed  Google Scholar 

  216. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  217. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  218. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  PubMed  Google Scholar 

  219. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed  CAS  Google Scholar 

  220. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  221. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  222. Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  223. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  PubMed  CAS  Google Scholar 

  224. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  225. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–7

    Article  PubMed  CAS  Google Scholar 

  226. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  227. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  PubMed  CAS  Google Scholar 

  228. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    Article  PubMed  CAS  Google Scholar 

  229. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  CAS  Google Scholar 

  230. Zhang Y, Li Y (2013) Regulation of innate receptor pathways by microRNAs. Sci China Life Sci. 56:13–18

    Article  PubMed  CAS  Google Scholar 

  231. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23:421–425

    Article  PubMed  CAS  Google Scholar 

  232. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A. 106:2735–2740

    Article  PubMed  CAS  Google Scholar 

  233. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  234. Roy S, Sen CK (2011) MiRNA in innate immune responses: novel players in wound inflammation. Physiol Genomics 43:557–565

    Article  PubMed  CAS  Google Scholar 

  235. Case SR, Martin RJ, Jiang D, Minor MN, Chu HW (2011) MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp Lung Res 37:500–508

    Article  PubMed  CAS  Google Scholar 

  236. Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298:G535–41

    Article  PubMed  CAS  Google Scholar 

  237. Nahid MA, Satoh M, Chan EK (2011) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8:388–403

    Article  PubMed  CAS  Google Scholar 

  238. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innateimmune responses. Proc Natl Acad Sci U S A. 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  239. Nahid MA, Pauley KM, Satoh M, Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: Implication In Innate Immunity. J Biol Chem 284:34590–34599

    Article  PubMed  CAS  Google Scholar 

  240. Feng X, Wang H, Ye S, Guan J, Tan W, Cheng S et al (2012) Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IκBα. PLoS One 7:e52782

    Article  PubMed  CAS  Google Scholar 

  241. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A. 106:15819–15824

    Article  PubMed  CAS  Google Scholar 

  242. Foley NH, O’Neill LA (2012) miR-107: a toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes. J Leukoc Biol 92:521–527

    Article  PubMed  CAS  Google Scholar 

  243. Tserel L, Runnel T, Kisand K, Pihlap M, Bakhoff L, Kolde R et al (2011) MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511as putative positive regulator of Toll-like receptor 4. J Biol Chem 286:26487–26495

    Article  PubMed  CAS  Google Scholar 

  244. Wendlandt EB, Graff JW, Gioannini TL, McCaffrey AP, Wilson ME (2012) The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation. Innate Immun 18:846–855

    Article  PubMed  Google Scholar 

  245. Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S et al (2012) IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A. 109:E3101–10

    Article  PubMed  CAS  Google Scholar 

  246. Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835

    Article  PubMed  CAS  Google Scholar 

  247. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 109:E2110–6

    Article  PubMed  CAS  Google Scholar 

  248. Fabbri M (2012) TLRs as miRNA receptors. Cancer Res 72:6333–6337

    Article  PubMed  CAS  Google Scholar 

  249. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147

    Article  PubMed  CAS  Google Scholar 

  250. Nahid MA, Satoh M, Chan EK (2011) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8:388–403

    Article  PubMed  CAS  Google Scholar 

  251. Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB et al (2012) Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J Immunol 189:3795–3799

    Article  PubMed  CAS  Google Scholar 

  252. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 189:4175–4181

    Article  PubMed  CAS  Google Scholar 

  253. Hou J, Wang P, Lin L, Liu X, Ma F, An H et al (2009) MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 183:2150–2158

    Article  PubMed  CAS  Google Scholar 

  254. Huang Z, Chen X, Yu B, Chen D (2012) Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24. Dev Comp Immunol 37:414–420

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton G. Kutikhin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Kutikhin, A.G., Yuzhalin, A.E. (2013). The Biology of Toll-Like Receptors and NOD-Like Receptors: The Toggles of Inflammation. In: Genomics of Pattern Recognition Receptors. Springer, Basel. https://doi.org/10.1007/978-3-0348-0688-6_1

Download citation

Publish with us

Policies and ethics