Skip to main content

Measuring Two at the Same Time: Combining Magnetic Tweezers with Single-Molecule FRET

  • Chapter
  • First Online:
Fluorescent Methods for Molecular Motors

Part of the book series: Experientia Supplementum ((EXS,volume 105))

Abstract

Molecular machines are the workhorses of the cell that efficiently convert chemical energy into mechanical motion through conformational changes. They can be considered powerful machines, exerting forces and torque on the molecular level of several piconewtons and piconewton-nanometer, respectively. For studying translocation and conformational changes of these machines, fluorescence methods, like FRET, as well as “mechanical” methods, like optical and magnetic tweezers, have proven well suited over the past decades. One of the current challenges in the field of molecular machines is gaining maximal information from single-molecule experiments by simultaneously measuring translocation, conformational changes, and forces exerted by these machines. In this chapter, we describe the combination of magnetic tweezers with single-molecule FRET for orthogonal simultaneous readout to maximize the information gained in single-molecule experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

DM:

Dichroic mirror

DNA:

Deoxyribonucleic acid

dNTP:

Deoxyribonucleoside triphosphate

dTTP:

Deoxythymidine triphosphate

dUTP:

Deoxyuridine triphosphate

EMCCD:

Electron multiplying charge-coupled device

FRET:

Förster resonance energy transfer

GPU:

Graphics processing unit

HJ:

Holliday junction

LUT:

Lookup table

PCR:

Polymerase chain reaction

RCLED:

Resonant-cavity light-emitting diode

RNA:

Ribonucleic acid

ROI:

Region of interest

TIRF:

Total internal reflection fluorescence

References

  1. Axelrod D (2013) Evanescent excitation and emission in fluorescence microscopy. Biophys J 104:1401–1409. doi:10.1016/j.bpj.2013.02.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516. doi:10.1038/nmeth.1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Joo C, Balci H, Ishitsuka Y et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76. doi:10.1146/annurev.biochem.77.070606.101543

    Article  CAS  PubMed  Google Scholar 

  4. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228. doi:10.1146/annurev.biochem.77.043007.090225

    Article  CAS  PubMed  Google Scholar 

  5. De Vlaminck I, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41:453–472. doi:10.1146/annurev-biophys-122311-100544

    Article  PubMed  Google Scholar 

  6. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505. doi:10.1038/nmeth.1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. de Souza N (2012) Pulling on single molecules. Nat Methods 9:873–877. doi:10.1038/nmeth.2149

    Article  PubMed  Google Scholar 

  8. Chistol G, Liu S, Hetherington CL et al (2012) High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 151:1017–1028. doi:10.1016/j.cell.2012.10.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bormuth V, Varga V, Howard J, Schaffer E (2009) Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325:870–873

    Article  CAS  PubMed  Google Scholar 

  10. Liu B, Baskin RJ, Kowalczykowski SC (2013) DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature. doi:10.1038/nature12333

    Google Scholar 

  11. La Porta A, Wang M (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett. doi:10.1103/PhysRevLett.92.190801

    Google Scholar 

  12. Deufel C, Forth S, Simmons CR et al (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4:223–225. doi:10.1038/nmeth1013

    Article  CAS  PubMed  Google Scholar 

  13. Lipfert J, Kerssemakers JW, Jager T, Dekker NH (2010) Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat Methods 7:977–980

    Article  CAS  PubMed  Google Scholar 

  14. Oberstrass FC, Fernandes LE, Lebel P, Bryant Z (2013) Torque spectroscopy of DNA: base-pair stability, boundary effects, backbending, and breathing dynamics. Phys Rev Lett 110:178103. doi:10.1103/PhysRevLett.110.178103

    Article  PubMed Central  PubMed  Google Scholar 

  15. Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8:335–340. doi:10.1038/nmeth.1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-Force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318:279–283. doi:10.1126/science.1146113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lee M, Kim SH, Hong SC (2010) Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension. Proc Natl Acad Sci USA 107:4985–4990. doi:10.1073/pnas.0911528107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Long X, Parks JW, Bagshaw CR, Stone MD (2013) Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res 41:2746–2755. doi:10.1093/nar/gks1341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Strick TR, Dessinges MN, Charvin G et al (2002) Stretching of macromolecules and proteins. Rep Prog Phys 66:1

    Article  Google Scholar 

  20. Haber C, Wirtz D (2000) Magnetic tweezers for DNA micromanipulation. Rev Sci Instrum 71:4561. doi:10.1063/1.1326056

    Article  CAS  Google Scholar 

  21. Leuba SH, Wheeler TB, Cheng C-M et al (2009) Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow. Methods 47:214–222. doi:10.1016/j.ymeth.2008.10.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329. doi:10.1016/S0006-3495(02)75672-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fisher JK, Cribb J, Desai KV et al (2006) Thin-foil magnetic force system for high-numerical-aperture microscopy. Rev Sci Instrum 77:023702. doi:10.1063/1.2166509

    Article  PubMed Central  Google Scholar 

  24. Kauert DJ, Kurth T, Liedl T, Seidel R (2011) Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett 11:5558–5563. doi:10.1021/nl203503s

    Article  CAS  PubMed  Google Scholar 

  25. Brutzer H, Schwarz FW, Seidel R (2012) Scanning evanescent fields using a pointlike light source and a nanomechanical DNA gear. Nano Lett 12:473–478. doi:10.1021/nl203876w

    Article  CAS  PubMed  Google Scholar 

  26. Schwarz FW, Toth J, van Aelst K et al (2013) The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA. Science 340:353–356. doi:10.1126/science.1231122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Oberstrass F, Fernandes L (2012) Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc Natl Acad Sci USA 109:6106–6111. doi:10.1073/pnas.1113532109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Howan K, Smith AJ, Westblade LF et al (2012) Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 490:431–434. doi:10.1038/nature11430

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340:1580–1583. doi:10.1126/science.1235441

    Article  CAS  PubMed  Google Scholar 

  30. Strick TR, Allemand JF, Bensimon D, Croquette V (1998) Behavior of supercoiled DNA. Biophys J 74:2016–2028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Strick T, Allemand J, Croquette V (2000) Twisting and stretching single DNA molecules. Prog Biophys Mol Biol 74:115–140

    Article  CAS  PubMed  Google Scholar 

  32. Salerno D, Tempestini A, Mai I et al (2012) Single-molecule study of the DNA denaturation phase transition in the force-torsion space. Phys Rev Lett 109:118303. doi:10.1103/PhysRevLett.109.118303

    Article  CAS  PubMed  Google Scholar 

  33. Tempestini A, Cassina V, Brogioli D et al (2013) Magnetic tweezers measurements of the nanomechanical stability of DNA against denaturation at various conditions of pH and ionic strength. Nucleic Acids Res 41:2009–2019. doi:10.1093/nar/gks1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Strick TR, Allemand JF, Bensimon D et al (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837

    Article  CAS  PubMed  Google Scholar 

  35. Brutzer H, Luzzietti N, Klaue D, Seidel R (2010) Energetics at the DNA supercoiling transition. Biophys J 98:1267–1276. doi:10.1016/j.bpj.2009.12.4292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. van Loenhout MTJ, de Grunt MV, Dekker C (2012) Dynamics of DNA supercoils. Science. doi:10.1126/science.1225810

    PubMed  Google Scholar 

  37. Ribeck N, Saleh OA (2008) Multiplexed single-molecule measurements with magnetic tweezers. Rev Sci Instrum 79:094301. doi:10.1063/1.2981687

    Article  PubMed  Google Scholar 

  38. De Vlaminck I, Henighan T, van Loenhout MTJ et al (2011) Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett 11:5489–5493. doi:10.1021/nl203299e

    Article  PubMed  Google Scholar 

  39. Lansdorp BM, Tabrizi SJ, Dittmore A, Saleh OA (2013) A high-speed magnetic tweezer beyond 10,000 frames per second. Rev Sci Instrum 84:044301. doi:10.1063/1.4802678

    Article  PubMed  Google Scholar 

  40. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lipfert J, Hao X, Dekker NH (2009) Quantitative modeling and optimization of magnetic tweezers. Biophys J 96:5040–5049. doi:10.1016/j.bpj.2009.03.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594. doi:10.1063/1.1645654

    Article  Google Scholar 

  43. Vilfan ID, Lipfert J, Koster DA et al (2009) Handbook of single-molecule biophysics. Springer, Heidelberg, pp 371–395. doi:10.1007/978-0-387-76497-9_13

  44. Norrelykke SF, Flyvbjerg H (2010) Power spectrum analysis with least-squares fitting: amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers. Rev Sci Instrum 81:075103. doi:10.1063/1.3455217

    Article  PubMed  Google Scholar 

  45. te Velthuis AJW, Kerssemakers JWJ, Lipfert J, Dekker NH (2010) Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys J 99:1292–1302. doi:10.1016/j.bpj.2010.06.008

    Article  Google Scholar 

  46. Lansdorp BM, Saleh OA (2012) Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Rev Sci Instrum 83:025115. doi:10.1063/1.3687431

    Article  PubMed Central  PubMed  Google Scholar 

  47. Czerwinski F, Richardson AC, Oddershede LB (2009) Quantifying noise in optical tweezers by allan variance. Opt Express 17:13255–13269

    Article  CAS  PubMed  Google Scholar 

  48. Stahl FW (1994) The Holliday junction on its thirtieth anniversary. Genetics 138:241

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Buranachai C, McKinney SA, Ha T (2006) Single molecule nanometronome. Nano Lett 6:496–500. doi:10.1021/nl052492p

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bronson JE, Fei J, Hofman JM et al (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205. doi:10.1016/j.bpj.2009.09.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951. doi:10.1529/biophysj.106.082487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hermanson GT (2013) Bioconjugate techniques. Academic Press, London

    Google Scholar 

  53. Bikard D, Loot C, Baharoglu Z, Mazel D (2010) Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 74:570–588. doi:10.1128/MMBR.00026-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Landry MP, McCall PM, Qi Z, Chemla YR (2009) Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys J 97:2128–2136. doi:10.1016/j.bpj.2009.07.048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835. doi:10.1529/biophysj.107.117689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Swoboda M, Henig J, Cheng H-M et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6:6364–6369. doi:10.1021/nn301895c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ramreddy T, Sachidanandam R, Strick TR (2011) Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation. Nucleic Acids Res 39:4275–4283. doi:10.1093/nar/gkr008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Loot C, Ducos-Galand M, Escudero JA et al (2012) Replicative resolution of integron cassette insertion. Nucleic Acids Res. doi:10.1093/nar/gks620

    PubMed Central  PubMed  Google Scholar 

  59. Swoboda M, Grieb MS, Hahn S, et al. manuscript in preparation

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge numerous discussions with the group of Ralf Seidel, in particular Ralf Seidel, Alexander Huhle, and Friedrich Schwarz. Furthermore, discussions and software support by members of the Schlierf lab are highly appreciated. This work was supported by grants from BMBF 03Z2EN11 (to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlierf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Swoboda, M., Grieb, M.S., Hahn, S., Schlierf, M. (2014). Measuring Two at the Same Time: Combining Magnetic Tweezers with Single-Molecule FRET. In: Toseland, C., Fili, N. (eds) Fluorescent Methods for Molecular Motors. Experientia Supplementum, vol 105. Springer, Basel. https://doi.org/10.1007/978-3-0348-0856-9_12

Download citation

Publish with us

Policies and ethics