Skip to main content

Molecular Mechanisms of Action Induced by 5-HT3 Receptors in a Neuronal Cell Line and by 5-HT2 Receptors in a Glial Cell Line

  • Chapter
Serotonin: Molecular Biology, Receptors and Functional Effects

Summary

The molecular mechanisms of action of serotonin were investigated in a neuronal cell line expressing 5-HT3 receptors (neuroblastoma × glioma hybrid cells) and in a glioma cell line with 5-HT2 receptors. In both cell lines, serotonin induces a transient rise of cytosolic Ca2+ activity. Ca2+ channel blockers (Ni2+ and La2+) suppress the Ca2+ response to serotonin in the neuronal cells but not in the glial cells. When internal Ca2+ stores are depleted and short-circuited by applying Ca2+ ionophores (ionomycin and A23187), serotonin still induces the normal Ca2+ response in the neuronal hybrid cells but not in the glioma cells. Thus, in the neuronal cell line cytosolic Ca2+ activity is enhanced through stimulation of Ca2+ entry into the cells from the extracellular environment via 5-HT3 receptors. The depolarization response caused by serotonin in these cells is due to activation of a cation conductance, and consequent entry of extracellular Ca2+. In the neuronal cell line, serotonin induces a rise of the cyclic GMP level, which depends on the rise of cytosolic Ca2+ activity. This conclusion is derived from the following findings: The serotonin-stimulated rise of cyclic GMP level is inhibited by i) reduced extracellular Ca2+ concentration (half-maximal stimulation at 0.3 mM Ca2+); ii) addition of inorganic (La3+, Mn2+, Co2+, Ni2+) or organic blockers (diltiazem, methoxyverapamil) of Ca2+ permeable channels; and iii) intracellular application of the Ca2+ chelator BAPTA. The suppression of the cyclic GMP effect of serotonin by the arginine analogues (NG-monomethyl-L-arginine, NG-nitro-L-arginine and canavanine) and by incubation in media containing oxyhemoglobin indicates that after stimulation with serotonin nitric oxide released from arginine acts as an intercellular stimulant of soluble guanylate cyclase. The rise of cytosolic Ca2+ activity appears to be a prerequisite for the formation of nitric oxide as an activator of guanylate cyclase. In the glial cell line, however, ketanserin-sensitive 5-HT2 receptors mainly cause liberation of Ca2+ from internal stores. In the glioma cells, Ca2+ released from internal stores opens Ca2+ -dependent K+ channels which results in the hyperpolarizing response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananth, U. S., Leli, U., and Hauser, G. (1987). Stimulation of phosphoinositide hydrolysis by serotonin in C6 glioma cells. J. Neurochem. 48: 253–261.

    Article  Google Scholar 

  • Christian, C. N., Nelson, P. G., Bullock, P., Mullinax, D., and Nirenberg, M. (1978). Pharmacological responses of cells of a neuroblastoma x glioma hybrid clone and modulation of synapses between hybrid cells and mouse myotubes. Brain Res. 147: 261–276.

    Article  Google Scholar 

  • Conn, P. J., and Sanders-Bush, E. (1985). Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234: 195–203.

    Google Scholar 

  • Donié F., and Reiser G. (1989). A novel, specific binding protein assay for quantitation of intracellular inositol 1,3,4,5-tetrakisphosphate (InsP4) using a high-affinity InsP4 receptor from cerebellum. FEBS Lett. 254: 155–158.

    Article  Google Scholar 

  • Fozard, J. R. (1984). MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedeberg’s Arch. Pharmacol. 326: 36–44.

    Article  Google Scholar 

  • Furchgott, R. F., and Vanhoutte, P. M. (1989). Endothelium-derived relaxing and contracting factors. FASEB J. 3: 2007–2018.

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Cat+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450.

    Google Scholar 

  • Gundersen, C. B., Miledi, R., and Parker, I. (1984). Messenger RNA from human brain induces drug-and voltage-operated channels in Xenopus oocytes. Nature (Lond.) 308: 421–424.

    Article  Google Scholar 

  • Hamprecht, B., Glaser, T., Reiser, G., Bayer, E., and Propst, F. (1985). Culture and characteristics of hormone-responsive neuroblastoma x glioma hybrid cells. Meth. Enzymol. 109: 316–341.

    Article  Google Scholar 

  • Heumann, R., Reiser, G., van Calker, D., and Hamprecht, B. (1982). Polyploid rat glioma cells: production, oscillations of membrane potential and response to neurohormones. Exp. Cell Res. 139: 117–126.

    Article  Google Scholar 

  • Hoyer, D., and Neijt, H. C. (1987). Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG108–15 neuroblastoma-glioma cells. Eur. J. Pharmacol. 142: 291–292.

    Article  Google Scholar 

  • Jankowsky, A., Labarca, R., and Paul, S. A. (1984). Characterization of neurotransmitter receptor mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci. 35: 1953–1961.

    Article  Google Scholar 

  • Kilpatrick, G. J., Jones, B. J., and Tyers, M. B. (1987). Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature (Lond.) 330: 746–748.

    Article  Google Scholar 

  • Lambert, J. J., Peters, J. A., Hales, T. G., and Dempster, J. (1989). The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br. J. Pharmacol. 97: 27–40.

    Google Scholar 

  • Leysen, J. E., Niemegeer, C. J. E., Van Neuten, J. M., and Laduron, P. M. (1982). [3H]Ketanserin (R41 468), as selective 3H-ligand for serotonin2 receptor binding sites: binding properties, brain distribution and functional role. Mol. Pharmacol. 21: 304–314.

    Google Scholar 

  • Lübbert, H., Hoffman, B. J., Snutch, T. P., van Dyke, T., Levine, A. J., Hartig, P. R., Lester, H. A., and Davidson, N. (1987). cDNA cloning of serotonin 5-HT,c receptor by electrophysiological assays of mRNA-injected Xenopus oocytes, Proc. Natl. Acad. Sci. USA. 84: 4332–4336.

    Article  Google Scholar 

  • Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1989). Biosynthesis of nitric oxide from L-arginine. Biochem. Pharmacol. 38: 1709–1715.

    Article  Google Scholar 

  • Neijt, H. C., Plomb, J. J., and Vijverberg, H. P. M. (1989). Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells. J. Physiol. 411: 257–269.

    Google Scholar 

  • Ogura, A., and Amano, T. (1984). Serotonin-receptor coupled with membrane electrogenesis in a rat glioma clone. Brain Res. 297: 387–391.

    Article  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (Lond.) 327: 524–526.

    Article  Google Scholar 

  • Peroutka, S. J. (1988). 5-Hydroxytryptamine receptor subtypes. Annu. Rev. Neurosci. 11: 45–60.

    Article  Google Scholar 

  • Peters, J. A., Malone, H. M., and Lambert, J. J. (1990). Antagonism of 5-HT3 receptor mediated currents in murine N1E-115 neuroblastoma cells by (+)-tubocurarine. Neurosci. Lett. 110: 107–112.

    Article  Google Scholar 

  • Pollock, W. K., Sage, S. O., and Rink, T. J. (1987). Stimulation of Cat+ efflux from fura-2-loaded platelets activated by thrombin or phorbol myristate acetate. FEBS Lett. 210: 132–136.

    Article  Google Scholar 

  • Reiser, G. (1990). Mechanism of stimulation of cyclic GMP level in a neuronal cell line mediated by serotonin (5-HT3) receptors: involvement of nitric oxide, arachidonic-acid metabolism and cytosolic Cat+. Eur. J. Biochem. 189: 547–552.

    Article  Google Scholar 

  • Reiser, G., Walter, U., and Hamprecht, B. (1984). Bradykinin regulates the level of guanosine 3’, 5’-cyclic monophosphate (cyclic GMP) in neural cell lines. Brain Res. 290: 367–371.

    Article  Google Scholar 

  • Reiser, G., Binmöller, F.-J., and Koch, R. (1988). Memantine (1-amino-3,5-dimethyladamantane) blocks the serotonin-induced depolarization response in a neuronal cell line. Brain Res. 443: 338–344.

    Article  Google Scholar 

  • Reiser, G., Donié, F., and Binmöller, F.-J. (1989). Serotonin regulates cytosolic Cat+ activity and membrane potential in a neuronal and in a glial cell line via 5-HT3- and 5-HT2-receptors by different mechanisms. J. Cell. Sci. 93: 545–555.

    Google Scholar 

  • Reiser, G., Binmöller, F.-J., and Donié, F. (1990a). Mechanisms for activation and subsequent removal of cytosolic Ca2± in bradykinin-stimulated neuronal and glial cell lines. Exp. Cell. Res. 186: 47–53.

    Article  Google Scholar 

  • Reiser G., Binmöller F.-J., Strong P. N., and Hamprecht B. (1990b). Activation of a K+ conductance by bradykinin and by inositol-1,4,5-trisphosphate in rat glioma cells: involvement of intracellular and extracellular Cat+. Brain Res. 506: 205–214.

    Article  Google Scholar 

  • Richardson, B. P., and Engel, G. (1986). The pharmacology and function of 5-HT3 receptors. Trends Neurosci. 9: 424–428.

    Article  Google Scholar 

  • Schmidt, H. H. H. W., Nau, H., Wittfoht, W., Gerlach, J., Prescher, K. E., Klein, M. M., Niroomand, F., and Böhme, E. (1988). Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur. J. Pharmcol. 154: 213–216.

    Article  Google Scholar 

  • Waldman, S. A., and Murad, F. (1987). Cyclic GMP synthesis and function. Pharmacol. Rev. 39: 163–196.

    Google Scholar 

  • Yakel, J. L., and Jackson, M. B. (1988). 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron 1: 615–621.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Reiser, G. (1991). Molecular Mechanisms of Action Induced by 5-HT3 Receptors in a Neuronal Cell Line and by 5-HT2 Receptors in a Glial Cell Line. In: Fozard, J.R., Saxena, P.R. (eds) Serotonin: Molecular Biology, Receptors and Functional Effects. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7259-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7259-1_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7261-4

  • Online ISBN: 978-3-0348-7259-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics