Skip to main content

Phosphoinositidase C, Inositol Polyphosphates and Force Generation of Airways Smooth Muscle

  • Chapter
Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

  • 62 Accesses

Abstract

Agonist-stimulated hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4, 5) P2) is now thought to be one of the major transmembrane signalling pathways involved in pharmacomechanical coupling in airways smooth muscle (ASM) [1–3]. The enzyme which plays such a pivotal role in this process, namely phosphoinositidase C (PIC), is a phosphodiesterase of the phospholipase C type and is responsible for the cleavage of PtdIns(4, 5) P2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) which serve to activate protein kinase C (PKC) and release intracellular Ca2+ respectively. The early studies which began to implicate a second-messenger function for Ins(1,4, 5) P3 in ASM contraction [4–7] have fuelled much research in this area not least because they offered one of the first plausible mechanisms whereby receptor activation could be linked to the release of intracellular Ca2+ in a manner that was not dependent on changes in membrane potential. It is now clear however, that a number of other membrane associated ‘phosphodiesterase-like’ enzymes including phospholipase D and phospholipase A2 may also be involved in integrating the response of ASM cells to incoming hormonal or neurotransmitter signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hall IP, Chilvers ER. Inositol phosphates and airway smooth muscle. Pulm Pharmacol 1989; 2: 113–20.

    Article  PubMed  CAS  Google Scholar 

  2. Coburn RF, Baron CB. Coupling mechanisms in airway smooth muscle. Am J Physiol 1990; 258: L119–33.

    Google Scholar 

  3. Schramm CM, Grunstein MM. Assessment of signal transduction mechanisms regulating airway smooth muscle contractility. Am J Physiol 1992; 262: L119–39.

    Google Scholar 

  4. Baron CB, Cunningham M, Strauss JF, Coburn RF. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc Natl Acad Sci 1984; 81: 6899–903.

    Article  PubMed  CAS  Google Scholar 

  5. Grandordy BM, Cuss FM, Sampson AS, Palmer JB, Barnes PJ. Phosphatidylinositol response to cholinergic agonists in airway smooth muscle: relationship to contraction and muscarinic receptor occupancy. J Pharmacol Exp Ther 1986; 238: 271–9.

    Google Scholar 

  6. Takuwa Y, Takuwa N, Rasmussen H. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle: measurements of the mass of polyphophosphoinositides, 1,2-diacylglycerol, and phosphatidic acid. J Biol Chem 1986; 261: 14670–5.

    PubMed  CAS  Google Scholar 

  7. Hashimoto T, Hirata M, Ito Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol 1985; 86: 191–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yang CM, Chou S-P, Sung T-C. Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Br J Pharmacol 1991; 104: 613–8.

    Article  PubMed  CAS  Google Scholar 

  9. Pyne S, Pyne NJ. Bradykinin stimulates phospholipase D in primary cultures of guinea-pig tracheal smooth muscle. Biochem Pharmacol 1993; 45: 593–603.

    Article  PubMed  CAS  Google Scholar 

  10. Robison GA, Butcher RW, Sutherland EW. Cyclic AMP and hormone action. In: Robison GA, editor. Cyclic AMP. New York: Academic Press, 1971; 17–47.

    Google Scholar 

  11. Krebs EG. The mechanism of hormonal regulation by cyclic AMP. In: Endocrinology. Proc 4th International Congress. Amsterdam: Excerpta Medica, 1973: 17–29.

    Google Scholar 

  12. Miller-Hance WC, Miller JR, Wells JN, Stull JT, Kamm KE. Biochemical events associated with activation of smooth muscle contraction. J Biol Chem 1988; 263: 13979–82.

    PubMed  CAS  Google Scholar 

  13. Duncan RA, Krzanowski JJ, Davis JS, Poison JB, Coffey RG, Shimoda T et al. Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus. Biochem Pharmacol 1987; 36: 307–10.

    Article  PubMed  CAS  Google Scholar 

  14. Chilvers ER, Batty IH, Barnes PJ, Nahorski SR. Formation of inositol polyphosphates in airway smooth muscle after muscarinic receptor stimulation. J Pharmacol Exp Ther 1990; 252: 786–91.

    PubMed  CAS  Google Scholar 

  15. Chilvers ER, Challiss RAJ, Barnes PJ, Nahorski SR. Mass changes of inositol(1,4,5)trisphosphate in trachealis muscle following agonist stimulation. Eur J Pharmacol 1989; 164: 587–90.

    Article  PubMed  CAS  Google Scholar 

  16. Rosenberg SM, Berry GT, Yandrasitz JR, Grunstein MM. Maturational regulation of inositol 1,4,5-trisphosphate metabolism in rabbit airway smooth muscle. J Clin Invest 1991; 88: 2032–8.

    Article  PubMed  CAS  Google Scholar 

  17. Meurs H, Roffel AF, Postema JB, Timmermans A, Elzinga CRS, Kauffman HF et al. Evidence for a direct relationship between phosphoinositide metabolism and airway smooth muscle contraction induced by muscarinic agonists. Eur J Pharmacol 1988; 156: 271–4.

    Article  PubMed  CAS  Google Scholar 

  18. Murray RK, Bennett CF, Fluharty SJ, Kotlikoff MI. Mechanism of phorbol ester inhibition of histamine-induced IP3 formation in cultured airway smooth muscle. AM J Physiol 1989; 257: L209–16.

    Google Scholar 

  19. Orellana S, Solski PA, Brown JH. Guanosine 5′-O-(thiotrisphosphate)-dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase CJ Biol Chem 1987; 262: 1638–43.

    CAS  Google Scholar 

  20. Somlyo AV, Bond M, Somlyo AP, Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci 1985; 82: 5231–5.

    Article  PubMed  CAS  Google Scholar 

  21. Bitar KN, Bradford PG, Putney Jr JW, Makhlouf GM. Stoichiometry of contraction and Ca2 + mobilisation by inositol 1,4,5-trisphosphate in isolated gastric smooth muscle. J Biol Chem 1986; 261: 16591–6.

    PubMed  CAS  Google Scholar 

  22. Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trentham DR. Kinetics of smooth and skeletal muscle activation by laser photolysis of caged inositol 1,4,5-trisphosphate. Nature 1987; 327: 249–52.

    Article  PubMed  CAS  Google Scholar 

  23. Somlyo AV, Horiuti K, Trentham DR, Katazawa T, Somlyo AP. Kinetics of Ca2+ release and contraction induced by photolysis of caged D-myo-inositol 1,4,5-trisphosphate in smooth muscle. J Biol Chem 1992; 267: 22316–22.

    PubMed  CAS  Google Scholar 

  24. Baba K, Baron CB and Coburn RF. Phorbol ester effects on coupling mechanisms during cholinergic contractions of swine tracheal smooth muscle. J Physiol (Lond) 1989; 412: 23–42.

    CAS  Google Scholar 

  25. Chilvers ER, Barnes PJ, Nahorski SR. Characterisation of agonist-stimulated incorporation of myo-[3H] inositol into inositol phospholipids and [3H]inositol phosphate formation in tracheal smooth muscle. Biochem J 1989; 262: 739–46.

    PubMed  CAS  Google Scholar 

  26. Kennedy ED, Challiss RAJ, Ragan CI, Nahorski SR. Reduced inositol polyphosphate accumulation and inositol supply induced by lithium stimulated cerebral cortex slices. Biochem J 1990; 267: 781–6.

    PubMed  CAS  Google Scholar 

  27. Knox AJ, Higgins BG, Hall IP, Tattersfield AE. Effect of oral lithium on bronchial reactivity in asthma. Clin Sci 1992; 82: 407–12.

    PubMed  CAS  Google Scholar 

  28. Chilvers ER, Challiss RAJ, Willcocks AL, Potter BVL, Barnes PJ, Nahorski SR. Characterisation of stereospecific binding sites for inositol(1,4,5)-trisphosphate in airway smooth muscle. Br J Pharmacol 1990; 99: 297–302.

    Article  PubMed  CAS  Google Scholar 

  29. Schramm CM, Chuang ST, Grunstein MM. Maturation of inositol 1,4,5-trisphosphate receptor binding in rabbit tracheal smooth muscle. Am J Physiol 1992; L501–5.

    Google Scholar 

  30. Rüegg JC (editor). Calcium in Muscle Activation: A Comparative Approach Vol 19. New York: Springer-Verlag, 1986: 201–8.

    Google Scholar 

  31. Taylor DA, Browman BF, Stull JT. Cytoplasmic Ca2+ is a primary determinant for myosin phosphorylation in smooth muscle cells. J Biol Chem 1989; 264: 6207–13.

    PubMed  CAS  Google Scholar 

  32. Itoh T, Ikebe M, Kargacin GJ, Hartshorne DJ, Kemp BE, Fay FS. Effects of modulations of myosin light-chain kinase activity in single smooth muscle cells. Nature 1989; 338: 164–7.

    Article  PubMed  CAS  Google Scholar 

  33. Chilvers ER, Challiss RAJ, Nahorski SR. Effects of depolarisation and intra- and extracellular calcium concentration on muscarinic receptor stimulated phosphoinositide hydrolysis in airway smooth muscle (ASM). Am Rev Resp Dis 1992; 145: A372.

    Article  Google Scholar 

  34. Lynch BJ, Chilvers ER. Metabolism of inositol (1,4,5)-trisphosphate in bovine tracheal smooth muscle (BTSM). Eur Respir J 1992; 5: 65–6s.

    Google Scholar 

  35. Rhee SG. Inositol phospholipid-specific phospholipase C: interaction of the γ1 isoform with tyrosine kinase. Trends Biochem Sci 1991; 16: 297–301.

    Article  PubMed  CAS  Google Scholar 

  36. Cockcroft S, Thomas GMH. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 1992; 288: 1–14.

    PubMed  CAS  Google Scholar 

  37. Rhee SG, Suh R-G, Ryu S-H, Lee SY. Studies of inositol phospholipid-specific phospholipase C. Science 1989; 244: 546–50.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor GD, Fee JA, Silbert DF, Hofmann SL. PI-specific phospholipase C “α” from sheep seminal vesicles is a proteolytic fragment of PI-PLCδ. Biochem Biophys Res Comm 1992; 188: 1176–83.

    Article  PubMed  CAS  Google Scholar 

  39. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG. PDGF stimulation of inositol phospholipid hydrolysis required PLC-γ 1 phosphorylation on tyrosine residues 783 and 1254. Cell 1991; 65: 435–41.

    Article  PubMed  CAS  Google Scholar 

  40. Kumjian D, Barnstein A, Rhee SG, Daniel TO. Phospholipase Cγ complexes with ligand-activated platelet-derived growth factor receptors: an intermediate implicated in phospholipase activation. J Biol Chem 1991; 266: 3973–80.

    PubMed  CAS  Google Scholar 

  41. Lee K-Y, Ryu SH, Suh P-G, Choi WC, Rhee SG. Phospholipase C associated with particulate fractions of bovine brain. Proc Natl Acad Sci 1987; 84: 5540–4.

    Article  PubMed  CAS  Google Scholar 

  42. Homma Y, Takenawa T, Emori Y, Sorimachi H, Suzuki K. Tissue and cell type specific expression of mRNAs for four types of inositol phospholipid-specific phospholipase C. Biochem Biophys Res Comm 1989; 164: 406–12.

    Article  PubMed  CAS  Google Scholar 

  43. Murray RK, Feuerstein BJ, Kotlikoff MI. Multiple isoforms of phosphinositide-specific phospholipase C in airway smooth muscle. Am Rev Resp Dis 1991; 143: A556.

    Google Scholar 

  44. Chilvers ER, Barnes PJ, Giembycz MA. Presence of multiple phosphoinositidase C isoforms in bovine tracheal smooth muscle. Thorax 1992; 47: 213P.

    Google Scholar 

  45. Katz A, Wu D, Simon MI. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 1992; 360: 686–9.

    Article  PubMed  CAS  Google Scholar 

  46. Biden TJ, Prugue ML, Davison AGM. Evidence for phosphatidylinositol hydrolysis in pancreatic islets stimulated with carbamoylcholine. Biochem J 1992; 285: 541–9.

    PubMed  CAS  Google Scholar 

  47. Chilvers ER, Batty IH, Challiss RAJ, Barnes PJ, Nahorski SR. Determination of mass changes in phosphatidylinositol(4,5)bisphosphate and evidence for agonist stimulation metabolism of inositol(1,4,5)trisphosphate in airway smooth muscle. Biochem J 1990; 275: 373–9.

    Google Scholar 

  48. Biden TJ, Peter-Riesch B, Schlegel W, Wollheim CB. Ca2+-mediated generation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. J Biol Chem 1987; 262: 3567–71.

    PubMed  CAS  Google Scholar 

  49. Sasakawa N, Nakaki R, Yamomoto S, Kato R. Inositol trisphosphate accumulation by high K+ stimulation in cultured adrenal chromaffin cells FEBS Lett 1987; 223: 413–6.

    Article  PubMed  CAS  Google Scholar 

  50. Challiss RAJ, Nahorski SR. Depolarization and agonist-stimulated changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulation in rat cerebral cortex. J Neurochem 1991; 57: 1042–51.

    Article  PubMed  CAS  Google Scholar 

  51. Kardasz AM, Langlands JM, Rodger IW, Watson J. Inositol lipid turnover in isolated guinea-pig trachealis and lung parenchyma. Biochem Soc Trans 1987; 15: 474.

    CAS  Google Scholar 

  52. Baron CB, Pring M, Coburn RF. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle. Am J Physiol 1989; 256: C375–83.

    Google Scholar 

  53. Stephens LR, Hawkins PT, Downes CP. Metabolic and structural evidence for the existence of a third species of polyphosphoinositide in cells: D-phosphatidyl-myo-inositol 1,3-bisphosphate. Biochem J 1989; 259: 267–76.

    PubMed  CAS  Google Scholar 

  54. Irvine RF. Inositol lipids in cell signalling. Curr Opin Cell Biol 1992; 4: 212–9.

    Article  PubMed  CAS  Google Scholar 

  55. Stephens LR, Hughes KT, Irvine RF. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 1991; 351: 33–9.

    Article  PubMed  CAS  Google Scholar 

  56. Cunningham TN, Lips DL, Bansal VS, Caldwell KK, Mitchell CA, Majerus PW. Pathway for the formation of D-3-phosphate containing inositol phospholipids in intact human platelets. J Biol Chem 1990; 265: 21676–83.

    PubMed  CAS  Google Scholar 

  57. Baron CB, Pompeo JN, Coburn RF. Inositol 1,4,5-trisphosphate, inositol flux rates and pool sizes during smooth muscle relaxation. Am J Physiol 1992; 262: L100–4.

    Google Scholar 

  58. Leach KL, Ruff VA, Wright TM, Pessin MS, Raben DM. Dissociation of protein kinase C activation and sn-1 2-diacylglycerol formation. J Biol Chem 1991; 266: 3215–21.

    PubMed  CAS  Google Scholar 

  59. Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 1993; 291: 329–43.

    PubMed  CAS  Google Scholar 

  60. Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR. Dietary ω-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 1993; 651–60.

    Google Scholar 

  61. Lynch BJ, Chilvers ER. Muscarinic cholinoceptor stimulated accumulation of inositol (4,5)-bisphosphate in bovine tracheal smooth muscle. Am Rev Resp Dis 1993; 147: A937.

    Google Scholar 

  62. Darnell JC, Osterman DG, Saltiel AR. Synthesis of phosphatidlyinositol in rat liver microsomes is accompanied by the rapid formation of lysophosphatidylinositol. Biochem Biophys Acta 1991; 1084: 269–78.

    Article  PubMed  CAS  Google Scholar 

  63. Darnell JC, Osterman DG, Saltiel AR. Fatty acid remodelling of phosphatidylinositol under conditions of de novo synthesis in rat liver microsomes. Biochem Biophys Acta 1991; 1084: 279–91.

    Article  PubMed  CAS  Google Scholar 

  64. Cubitt AB, Thaw CN, Gershengorn MC. 5′-CMP stimulates phospholipase A-mediated hydrolysis of phosphatidylinositol in permeabilized pituitary GH3 cells. Biochem J 1991; 278: 831–4.

    PubMed  CAS  Google Scholar 

  65. Santiago OM, Rosenberg LI, Monaco ME. Organisation of the phosphoinositide cycle: assessment of inositol transferase activity in purified plasma membranes. Biochem J 1993; 290: 179–83.

    PubMed  CAS  Google Scholar 

  66. Roffel AF, Meurs H, Elzinga CRS, Zaagsma J. Characterization of the muscarinic receptor subtype involved in phosphoinositide metabolism in bovine tracheal smooth muscle. Br J Pharmacol 1990; 99: 293–6.

    Article  PubMed  CAS  Google Scholar 

  67. Hall IP, Hill SJ. β 2-adrenoceptor stimulation inhibits histamine-stimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br J Pharmacol 1988; 95: 1204–12.

    Article  PubMed  CAS  Google Scholar 

  68. Meurs H, Timmermans A, Van Amsterdam RGM, Brouwer F, Kauffman HF, Zaagsma J. Muscarinic receptors in human airway smooth muscle are coupled to phosphoinositide metabolism. Eur J Pharmacol 1989; 164: 369–71.

    Article  PubMed  CAS  Google Scholar 

  69. Madison JM, Brown JK. Differential inhibitory effects of forskolin, isoproterenol, and dibutyl cyclic adenosine monophosphate on phosphoinositide hydrolysis in canine tracheal smooth muscle. J Clin Invest 1988; 82: 1462–5.

    Article  PubMed  CAS  Google Scholar 

  70. Hay DWP. Mechanisms of endothelin-induced contraction in guinea pig trachea: comparison with rat aorta. Br J Pharmacol 1990; 100: 383–92.

    Article  PubMed  CAS  Google Scholar 

  71. Grunstein MM, Rosenberg SM, Schramm CM, Pawlowski NA. Mechanisms of action of endothelin 1 in maturing rabbit airway smooth muscle. Am J Physiol 1991; 260: L434–43.

    Google Scholar 

  72. Mong S, Miller J, Wu H-L, Crooke ST. Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 1988; 244: 508–15.

    PubMed  CAS  Google Scholar 

  73. Grandordy BM, Cuss FM, Meldrum L, Sturton RG, Barnes PJ. Leukotriene C4 and D4 induce contraction and formation of inositol phosphates in airways and lung parenchyma. Am Res Respir Dis 1987; 133: A239.

    Google Scholar 

  74. Howard S, Chan-Yeung M, Martin L, Phaneuf S, Salari H. Polyphosphoinositide hydrolysis and protein kinase C activation in guinea pig tracheal smooth muscle cells in culture by leukotriene D4 involve a pertussis toxin sensitive G-protein. Eur J Pharmacol 1992; 227: 123–9.

    Article  PubMed  CAS  Google Scholar 

  75. Grandordy BM, Frossard N, Rhoden KJ, Barnes PJ. Tachykinin-induced phosphoinositide breakdown in airway smooth muscle and epithelium: relationship to contraction. Mol Pharmacol 1988; 33: 515–9.

    PubMed  CAS  Google Scholar 

  76. Lemoine H, Pohl V, Teng KJ. Serotonin (5-HT) stimulates phosphatidylinositol (PI) hydrolysis only through the R-state of allosterically regulated 5-HT2 receptors in calf tracheal smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 1988; 377(Suppl) : R103.

    Google Scholar 

  77. Katsuyama H, Suzuki S, Nishiye E. Actions of second messengers synthesized by various spasmogenic agents and their relation to mechanical responses in dog tracheal smooth muscle. Br J Pharmacol 1990; 100: 41–8.

    Article  PubMed  CAS  Google Scholar 

  78. Bochkov V, Tkachuk V, Buhler F, Resink T. Phosphoinositide and calcium signalling responses in smooth muscle cells: comparison between lipoproteins, ANG II and PDGF. Biochem Biophys Res Comm 1992; 188: 1295–304.

    Article  PubMed  CAS  Google Scholar 

  79. Wills-Karp M. Effects of age on muscarinic agonist-induced contraction and IP accumulation in airway smooth muscle. Life Sci 1991; 49: 1039–45.

    Article  PubMed  CAS  Google Scholar 

  80. Chilvers ER. Phosphoinositide metabolism in bovine tracheal smooth muscle. PhD Thesis.; Univ. of London, 1991.

    Google Scholar 

  81. Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY. Flouresence ratio imaging of cyclic AMP in single cells. Nature 1991; 349: 694–7.

    Article  PubMed  CAS  Google Scholar 

  82. Stephens LR, Hawkins PT, Downes CP. An analysis of myo-[3H] inositol trisphosphates found in myo-[3H]inositol prelabelled avian erythrocytes. Biochem J 1989; 262: 727–37.

    PubMed  CAS  Google Scholar 

  83. Raha S, Jones GD, Gear ARL. Sub-second oscillations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate during platelet activation by ADP and thrombin: lack of correlation with calcium kinetics. Biochem J 1993; 292: 643–6.

    PubMed  CAS  Google Scholar 

  84. Krzanowski JJ, Duncan RA, Davis JS, Polson JB, Watanabe T, Lockey RF et al. The formation of inositol 1,3,4,5-tetrakisphosphate (IP4) in isolated contracting canine tracheal smooth muscle. In: Proceedings of the tenth international congress of pharmacology; 1987 Aug 23–28; Sydney, Australia, 1987: 01.

    Google Scholar 

  85. Chilvers ER, Giembycz MA, Challiss RAJ, Nahorski SR. Detection of sustained increases in inositol(1,3,4,5)-tetrakisphosphate in airway smooth muscle using a novel radioreceptor assay. Biochem Soc Trans 1991; 19: 76s.

    Google Scholar 

  86. Shears SB. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J 1989; 260: 313–24.

    PubMed  CAS  Google Scholar 

  87. Downes CP. The cellular functions of myo-inositol. Biochem Soc Trans 1989; 17: 259–68.

    PubMed  CAS  Google Scholar 

  88. Irvine RF, Moor RM, Pollock WK, Smith PM, Wreggett KA. Inositol phosphates: proliferation, metabolism and function. Phil Trans R Soc Lond 1988; 320: 281–98.

    Article  CAS  Google Scholar 

  89. Majerus PW, Connelly TM, Bansal VS, Inhorn RC, Ross TS, Lips DL. Inositol phosphates: synthesis and degradation. J Biol Chem 1988; 263: 3051–4. 90.

    Google Scholar 

  90. Irvine RF, Letcher AJ, Lander DJ, Downes CP. Inositol trisphosphates in carbacholstimulated rat parotid glands. Biochem J 1984; 223: 237–43.

    PubMed  CAS  Google Scholar 

  91. Kennedy ED, Batty IH, Chilvers ER, Nahorski SR. A simple enzymic method to separate [3H]inositol 1,4,5- and 1,3,4-trisphosphate isomers in tissue extracts. Biochem J 1989; 260: 283–6.

    PubMed  CAS  Google Scholar 

  92. Batty IH, Nahorski SR, Irvine RF. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortex slices. Biochem J 1985; 232: 211–5.

    PubMed  CAS  Google Scholar 

  93. Irvine RF. “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates: a possible mechanism. FEBS Lett 1990; 263: 5–9.

    Article  PubMed  CAS  Google Scholar 

  94. Nogimori K, Hughes PJ, Hodgson ME, Putney JW Jr, Shears SB. Purification of an inositol (1,3,4,5) tetrakisphosphate 3-phosphatase activity from rat liver, and determination that its physiologically relevant substrate is inositol hexakisphosphate. J Biol Chem 1991; 266: 16499–506.

    PubMed  CAS  Google Scholar 

  95. Ali N, Craxton A, Shears SB. Hepatic Ins(1,3,4,5)P4 3-phosphatase is compartmentalised inside endoplasmic reticulum. J Biol Chem 1993; 268: 6161–7.

    PubMed  CAS  Google Scholar 

  96. Donie F, Reiser G. A novel, specific binding protein assay for quantitation of intracellular inositol 1,3,4,5-tetrakisphosphate (InsP4) using a high-affinity InsP4 receptor from cerebellum. FEBS Lett 1989; 254: 155–8.

    Article  PubMed  CAS  Google Scholar 

  97. Challiss RAJ, Nahorski SR. Neurotransmitter and depolarisation-stimulated accumulation of inositol (1,3,4,5)-tetrakisphosphate mass in rat cerebral cortex slices. J Neurochem 1990; 54: 2138–41.

    Article  PubMed  CAS  Google Scholar 

  98. King WG, Rittenhouse SE. Inhibition of protein kinase C by staurosporine promotes elevated accumulations of inositol trisphosphates and tetrakisphosphates in human platelets exposed to thrombin. J Biol Chem 1989; 264: 6070–4.

    PubMed  CAS  Google Scholar 

  99. Batty IH, Nahorski SR. Analysis of [3H]inositol phosphate formation and metabolism in cerebral-cortical slices. Evidence for a dual metabolism of inositol 1,4-bisphosphate. Biochem J 1992; 288: 807–15.

    PubMed  CAS  Google Scholar 

  100. Nahorski SR, Ragan CI, Challiss RAJ. Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991; 121: 297–303.

    Article  Google Scholar 

  101. Pirotton S, Verjans B, Boeynaems J-M, Erneux C. Metabolism of inositol phosphates in ATP-stimulated vascular endothelial cells. Biochem J 1991; 277: 103–10.

    PubMed  CAS  Google Scholar 

  102. Voglmaier SM, Keen JH, Murphy J-E, Ferris CD, Prestwich GD, Snyder SH et al. Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2. Biochem Biophys Res Commun 1992; 187: 158–63.

    Article  PubMed  CAS  Google Scholar 

  103. Palczewski K, Pulvermüller A, Buczylko J, Gutmann C, Hofmann KP. Binding of inositol phosphates to arrestin. FEBS Lett 1991; 295: 195–9.

    Article  PubMed  CAS  Google Scholar 

  104. Vallejo M, Jackson T, Lightman S, Hanley MR. Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalial brain. Nature 1987; 330: 656–9.

    Article  PubMed  CAS  Google Scholar 

  105. Nicoletti F, Bruno V, Fiore L, Cavallaro S, Canonico PL. Inositol hexakisphosphate (phytic acid) enhances Ca2+ influx and D-[3H]aspartate release in cultured cerebellar neurons. J Neurochem 1989; 53: 1026–30.

    Article  PubMed  CAS  Google Scholar 

  106. Eggleton P, Penhallow J, Crawford N. Priming action of inositol hexakisphosphate (InsP6) on the stimulated respiratory burst in human neutrophils. Biochem Biophys Acta 1991; 1094: 309–16.

    Article  PubMed  CAS  Google Scholar 

  107. Lang D, Lewis MJ. The effects of flosequinan on endothelin- 1-induced changes in inositol 1,4,5-trisphosphate levels and protein kinase activity in rat aorta. Eur J Pharmacol 1992; 226: 259–64.

    Article  PubMed  CAS  Google Scholar 

  108. Cowley AJ, Wynne RD, Stainer K, Fullwood L, Rowley JM, Hampton, JR. Flosequinan in heart failure: acute haemodynamic and longer term symptomatic effects. Br Med J 1988; 297: 169–73.

    Article  CAS  Google Scholar 

  109. Cowley AJ, McEntegart DJ. Placebo-controlled trial of flosequinan in moderate heart failure. The possible importance of aetiology and method of analysis in the interpretation of the results of heart failure trails. Int J Cardiol 1993; 38: 167–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Chilvers, E.R. (1994). Phosphoinositidase C, Inositol Polyphosphates and Force Generation of Airways Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7681-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7681-0_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7683-4

  • Online ISBN: 978-3-0348-7681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics