Skip to main content

A Model for Attenuation and Scattering in the Earth’s Crust

  • Chapter
Scattering and Attenuations of Seismic Waves, Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda waves, Rg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1 10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constant Q), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedo B 0 = 0.8 0.9 and a scattering extinction length of 17 32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. The Rg results indicate that Q increases with depth in the upper kilometer or two of the crust, at least in New England. Coda Q appears to be equivalent to intrinsic (anelastic) Q and indicates that this Q increases with frequency as Q = Q 0 f n, where n is in the range of 0.2 0.9. The intrinsic attenuation in the crust can be explained by a high constant Q ( 500 ≤ Q 0 (2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ 0 f0.5) similar to those determined from the analysis of coda waves of regional seismograms. Q is low near the surface and high in the body of the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. (1980), Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Inter. 21, 50–60.

    Article  Google Scholar 

  • Aki, K. and Chouet, B. (1975), Origin of coda waves: Source, attenuation and scattering effects, J. Geophys. Res. 80, 3322–3342.

    Article  Google Scholar 

  • Aki, K. and Richards, P. G., Quantitative seismology. Theory and methods (W.H. Freeman and Co., San Francisco 1980).

    Google Scholar 

  • Birch, F. and Bancroft, D. (1938), Elasticity and internal friction in a long column of granite, Bull. Seism. Soc. Am. 28, 243–254.

    Google Scholar 

  • Bradley, J. J. and Fort, A. N., Jr., Internal friction in rocks, In Handbook of Physical Constants (ed. CLARK, S. P., Jr.) (1986) pp. 175–193.

    Google Scholar 

  • Campillo, M., Plantet, J.-L., and Bouchon, M. (1985), Frequency-dependent attenuation in the crust beneath central France from Lg waves: Data analysis and numerical modeling, Bull. Seism. Soc. Am. 75, 1395–1411.

    Google Scholar 

  • Clark, V. A., Spencer, T. W., Tittmann, B. R., Ahlberg, L. A., and Coombe, L. T. (1980), Effect of volatiles on attenuation Q -1 and velocity in sedimentary rocks, J. Geophys. Res. 85, 5190–5198.

    Article  Google Scholar 

  • Dainty, A. M. (1981), A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz, Geophys. Res. Lett. 8, 1126–1128.

    Article  Google Scholar 

  • Dainty, A. M. (1984), High-frequency acoustic backscattering and seismic attenuation, J. Geophys. Res. 89, 3172–3176.

    Article  Google Scholar 

  • Dainty, A. M. and Toksöz, M. N. (1977), Elastic wave propagation in a highly scattering medium. A diffusion approach, J. Geophys. 43, 375–388.

    Google Scholar 

  • Dainty, A. M. and Toksöz, M. N. (1981), Seismic codas on the Earth and the Moon: A comparison, Phys. Earth and Plan. Int. 26, 250–260.

    Article  Google Scholar 

  • Dainty, A. M., Toksöz, M. N., and Stein, S. (1976), Seismic investigation of the lunar interior, Lunar Science Conf., 7th Proc., Geochim. et Cosmochim. Acta, suppl. 73, 3057–3075.

    Google Scholar 

  • Dainty, A. M., Duckworth, R. M., and Tie, A. (1987), Attenuation and backscattering from local coda, Bull. Seism. Soc. Am. 77,1728–1747.

    Google Scholar 

  • Doll, W. E., Luetgert, J. H., and Murphy, J. M. (1986), Seismic refraction and wide-angle reflection in the northern Appalachians; the Chain Lakes Massif, northwest Maine (abst.), EOS 67, 312.

    Google Scholar 

  • Flatté, S. M. and Wu, R. S. (1987), Small-scale structure in the lithosphere and asthenosphere deduced from arrival time and amplitude fluctuations at NORSAR, J. Geophys. Res. 93, 6601–6614.

    Article  Google Scholar 

  • Frankel, A. and Clayton, R. W. (1986), Finite difference simulations of seismic scattering: Implications for the scattering of short-period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res. 91, 6465–6489.

    Article  Google Scholar 

  • Gao, L. S., Lee, L. C., Biswas, N. H., and Aki, K. (1983a), Comparison of the effects between single and multiple scattering on coda waves for local earthquakes, Bull. Seism. Soc. Am. 73, 373–389.

    Google Scholar 

  • Gao, L. S., Lee, L. C., Biswas, N. H., and Aki, K. (1983b), Effects of multiple scattering on coda waves in three-dimensional medium, PAGEOPH 121, 3–15.

    Article  Google Scholar 

  • Gardner, G. H. F., Wyllie, M. R. J., and Droschack, D. M. (1964), Effects of pressure and fluid saturation on the attenuation of elastic waves in sands, J. Petr. Tech., 2 189–198.

    Google Scholar 

  • Gupta, I. N., Burnetti, A., Mcelfresh, T. W., Von Seggern, D. H., and Wagner, R. A. (1983), Lateral variations in attenuation of ground motion in the eastern United States based on propagation of Lg, NUREG/CR-3555, U.S. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Herraiz, M. and Espinosa, A. F. (1987), Coda waves: A review, PAGEOPH 125, 499–577.

    Article  Google Scholar 

  • Herrmann, R. B. (1980), Q estimates using the coda of local earthquakes, Bull. Seism. Soc. Am. 70, 447–468.

    Google Scholar 

  • Herrmann, R. B. and Mitchell, B. J. (1975), Statistical analysis and interpretation of surface-wave anelastic attenuation data for the stable interior of North America, Bull. Seism. Soc. Am. 65, 1115–1128.

    Google Scholar 

  • Johnston, D. H. and Toksöz, M. N. (1980), Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure, J. Geophys. Res. 85, 925–936.

    Article  Google Scholar 

  • Klima, K., Vanek, J., and Pros, Z. (1964), The attenuation of longitudinal waves in diabase and greywacke under pressure up to 4 kilobars, Studia Geoph. et Geod. 8, 247–254.

    Article  Google Scholar 

  • Knopoff, L. (1964), Q, Rev. Geophys. 2, 625–660.

    Article  Google Scholar 

  • Kopnichev, Y. F. (1977), The role of multiple scattering in the formation of a seismogram tail, Izv. Acad. Sci., Ussr, Phys. Solid Earth 13, 394–398.

    Google Scholar 

  • Mason, W. P., Beshers, D. N., and Kuo, J. T. (1970), Internal friction in Westerly granite: Relation to dislocation theory, J. App. Phys. 41, 5206–5209.

    Article  Google Scholar 

  • Mitchell, B. J. (1980), Frequency dependence of shear wave internal friction in the continental crust of eastern North America, J. Geophys. Res. 85, 5212–5218.

    Article  Google Scholar 

  • Mooney, W. D. and Brocher, T. M. (1987), Coincident seismic reflection /refraction studies of the continental lithosphere: A global review, Rev. Geophys. 25, 723–742.

    Article  Google Scholar 

  • Nur, A. and Winkler, K. (1980), The role offriction and fluid flow in wave attenuation in rocks (abst.), Geophysics 45, 591–592.

    Google Scholar 

  • O’Doherty, R. F. and Anstey, N. A. (1971), Reflections on amplitudes, Geophys. Prospect. 19, 430–458.

    Article  Google Scholar 

  • Pandit, B. I. and Savage, J. C. (1973), An experimental test of Lomnitz’s theory of internal friction in rocks, J. Geophys. Res. 78, 6097–6099.

    Article  Google Scholar 

  • Peselnick, L. and Outerbridge, W. F. (1961), Internal friction in shear and shear modulus of Solenhofen limestone over a frequency range of 107 cycles per second, J. Geophys. Res. 66, 581–588.

    Article  Google Scholar 

  • Pulli,J. (1984), Attenuation of coda waves in New England, Bull. Seism. Soc. Am. 74, 1149–1166.

    Google Scholar 

  • Rautian, T. G. and Khalturin, V. I. (1978), The use of the coda for the determination of the earthquake source spectrum, Bull. Seism. Soc. Am. 63, 1809–1827.

    Google Scholar 

  • Richards, P. G. and Menke, W. (1983), The apparent attenuation of a scattering medium, Bull. Seism. Soc. Am. 73, 1005–1021.

    Google Scholar 

  • Roecker, S. W., Tucker, B., King, J. and Hatzfield, D. ( 1982), Estimates of Q in central Asia as a function offrequency and depth using the coda of locally recorded earthquakes, Bull. Seism. Soc. Am. 72, 129–149.

    Google Scholar 

  • Rovetta, M. R., Blaclc, J. D., and Delaney, J. R. (1987). Microfracture and crack healing in experimentally deformed peridotite, J. Geophys. Res. 92, 12902–12910.

    Article  Google Scholar 

  • Singh, S. (1985), Lg and coda wave studies of Eastern Canada, Ph.D. thesis, Saint Louis University, Missouri.

    Google Scholar 

  • Singh, S. and Herrmann, R. B. (1983), Regionalization of crustal coda Q in the continental United States, J. Geophys Res. 88, 527–538.

    Article  Google Scholar 

  • Smith, D. L., and Evans, B. (1984), Diffusional crack healing in quartz, J. Geophys. Res. 89, 4125–4135.

    Article  Google Scholar 

  • Spencer, J. W., Jr. (1981), Stress relaxations at low frequencies in fluid saturated rocks: Attenuation and modulus dispersion, J. Geophys. Res. 86, 1803–1812.

    Article  Google Scholar 

  • Tittmann, B. R., Housley,R. M., Alers, G. A., and Cirlin, E. H. (1974), Internal friction in rocks and its relationship to volatiles on the moon, Lunar Science Conf., 5th Proc., Geochim. et Cosmochim. Acta, suppl. 5 3, 2913–2918.

    Google Scholar 

  • Tittmann, B. R., Nadler, H., Clark, V. A., Ahlberg, L. A., and Spencer, T. W. (1981), Frequency dependence of seismic dissipation in saturated rocks, Geophys. Res. Lett. 8, 36–38.

    Article  Google Scholar 

  • Toksöz, M. N. and Johnston, D. H. (eds), (1981), Seismic wave attenuation, Geophysics reprint series No. 2, Society of Exploration Geophysicist.

    Google Scholar 

  • Toksöz, M. N., Johnston, D. H., and Timur, A. (1979), Attenuation of seismic waves in dry and saturated rocks. I. Laboratory measurements, Geophysics 44, 681–690.

    Article  Google Scholar 

  • Toksöz, M. N., Wu, R. S., and Schmitt, D. P. (1987), Physical mechanisms contributing to seismic attenuation in the crust, Proc. NATO ASI ‘Strong Ground Motion Seismology’, Ankara, Turkey, 225–247.

    Chapter  Google Scholar 

  • ToKSöz, M. N., Reiter, E., and Mandal, B. (1988), Seismic attenuation in the crust, Proc. 10th Ann. DARPA/AFGL Res. Symp., 127–134.

    Google Scholar 

  • Walsh, J. B. (1966), Seismic wave attenuation in rock due to fracture, J. Geophys. Res. 17, 2591–2599.

    Article  Google Scholar 

  • Winkler, K. and Nur, A. (1979), Pore fluids and seismic attenuation in rocks, Geophys. Res. Lett. 6,1–4.

    Article  Google Scholar 

  • Wu, R. S. (1982), Attenuation of short period seismic waves due to scattering, Geophys. Res. Lett. 9, 9–12.

    Article  Google Scholar 

  • Wu, R. S. (1984), Multiple scattering and energy transfer of seismic waves and the application of the theory to Hindu Kush region, In Seismic Wave Scattering and the Small Scale Inhomogeneities in the Lithosphere (Chapter 4, Ph.D. thesis, Mass. Inst. Tech., Cambridge, Ma).

    Google Scholar 

  • Wu, R. S. (1985), Multiple scattering and energy transfer of seismic waves. Separation of scattering effect from intrinsic attenuation. I. Theoretical modelling, Geophys. J. R. Astr. Soc. 82, 57–80.

    Article  Google Scholar 

  • Wu, R. S. and Aki, K. (1987), Multiple scattering and energy transfer of seismic waves—separation of scattering effect from intrinsic attenuation. II. Application of the theory to the Hindu Kush region. This issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Basel AG

About this chapter

Cite this chapter

Toksöz, M.N., Dainty, A.M., Reiter, E., Wu, RS. (1988). A Model for Attenuation and Scattering in the Earth’s Crust. In: Aki, K., Wu, RS. (eds) Scattering and Attenuations of Seismic Waves, Part I. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7722-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7722-0_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2254-0

  • Online ISBN: 978-3-0348-7722-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics