Skip to main content

Metabolic Control Analysis of the ATPase Network in Contracting Muscle: Regulation of Contractile Function and ATP Free Energy Potential

  • Chapter
Function and Regulation of Cellular Systems

Abstract

Skeletal muscle converts the thermodynamic force of the non-equilibrium ATP/ADP concentration ratio in the cytosol into mechanical force during contrac-tion1 [1]. As such, skeletal muscle function can be described using engineering concepts as a chemo-mechano transducer (Fig. 1). The molecular machinery in-volved in this conversion consists, amongst others, of filaments of actin and the motor protein myosin ATPase, and the calcium (Ca2+)-activated switch protein troponin [1]. The non-equilibrium cytosolic ATP/ADP concentration potential is thermodynamically buffered by the cellular pool of mitochondria via oxidative ADP phosphorylation. Kinetically, this cytosolic potential is buffered on a fast (i.e. (sub)second) time scale by creatine kinase (CK) and glycolysis, and on a slow (i.e. minutes) timescale by oxidative phosphorylation [2]. Muscle contraction and the associated conversion of thermodynamic ATP energy force is under voluntary, neural control [1]. It is initiated at the cellular level by action potential-gated re-lease of Ca2+ions from the sarcoplasmic reticulum (SR) stores into the myoplasm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.C. Rome and S.L. Lindstedt,Mechanical and Metabolic design of the vertebrate muscular system, in: W.H. Dantzler, Ed. Handbook of Physiology. Section13, Comparative Physiology (Oxford University Press) (1997), 1587–1651.

    Google Scholar 

  2. M.J. Kushmerick Energy balance in muscle activity: simulations of ATPase coupled to oxidative phos-phorylation and to creatine kinase. Comp Biochem Physiol B Biochem Mol Biol. 120 (1998), 109–123.

    Article  Google Scholar 

  3. H. Westerblad, D.G. Allen, J.D. Bruton, F.H. Andrade and J. Lannergren Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue, Acta Physiol Scand. 162 (1998), 253–260.

    Article  Google Scholar 

  4. R. Heinrich, S.M. Rapoport and T.A. Rapoport Metabolic regulation and mathematical models, Prog. Biophys. Molec. Biol. 32 (1977), 1–82.

    Article  MathSciNet  Google Scholar 

  5. J.A.L. Jeneson, H.V. Westerhoff and M.J. Kushmerick. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle, Am. J. Physiol. (Cell Physiol.) 279 (2000), C813–C832.

    Google Scholar 

  6. G.J. Stienen, R. Zaremba, and G. Elzinga ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis, J. Physiol. 482 (1995), 109–122.

    Google Scholar 

  7. J.A.L. Jeneson, R.W. Wiseman, H.V. Westerhoff, and M.J. Kushmerick The signal transduction function for oxidative phosphorylation is at least second order in ADP, J. Biol. Chem. 271 (1996), 27995–27998.

    Article  Google Scholar 

  8. J. Sakamoto and Y. Tonomura Order of release of ADP and Pi from phosphoenzyme with bound ADP of Ca2+-dependent ATPase from sarcoplasmic reticulum and of Na+/K+-dependent ATPase studied by ADP-inhibition patterns, J. Biochem. 87 (1980), 1721–1727.

    Google Scholar 

  9. R. Cooke and E. Pate The effect of ADP and phosphate on the contraction of muscle fibers, Biophys J 48 (1985), 789–798.

    Article  Google Scholar 

  10. E.E. Burmeister Getz and S.L. Lehman Calcium removal kinetics of the sarcoplasmic reticulum ATPase in skeletal muscle, Am. J. Physiol. (Cell Physiol.) 272 (1997), C1087–C1098.

    Google Scholar 

  11. M.L. Blei, K.E. Conley, and M.J. Kusmerick Separate measures of ATP utilization and recovery in human skeletal muscle, J. Physiol. 465 (1993), 203–222.

    Google Scholar 

  12. J.A.L. Jeneson, R.W. Wiseman, and M.J. Kushmerick Non-invasive quantitative 31P MRS assay of mitochondrial function in skeletal muscle in situ, Mol. Cell. Biochem. 174 (1997), 17–22.

    Article  Google Scholar 

  13. R.C. Harris, E. Hultman, and L.-O. Nordesjo Glycogen glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest, Scand. J. Clin. Lab. Invest. 33 (1974), 109–120.

    Article  Google Scholar 

  14. D.J. Taylor, P.J. Bore, P. Styles, D.G. Gadian, and G.K. Radda Bioenergetics of intact human muscle: a 31P NMR study, Mol. Biol. Med. 1 (1983), 77–94.

    Google Scholar 

  15. J.G. McCormack, A.P. Halestrap and R.M. Denton Role of calcium ions in regulation of mammalian intramitochondrial metabolism, Physiol Rev. 70 (1990), 391–425.

    Google Scholar 

  16. M.J. Kushmerick, R.A. Meyer and T.R. Brown Regulation of oxygen consumption in fast-and slow-twitch muscle, Am J Physiol. 263 (1992), C598–606.

    Google Scholar 

  17. D. Fell Understanding the control of metabolism, Portland Press, London, 1997.

    Google Scholar 

  18. J.-H.S. Hofmeyr and A. Cornish-Bowden Regulating the cellular economy of supply and demand, FEBS Lett. 476 (2000), 47–51.

    Article  Google Scholar 

  19. R.P. Hafner, G.C. Brown and M.D. Brand Analysis of the control of respiration rate phosphorylation rate proton leak rate and protonmotive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory, Eur J Biochem. 188 (1990), 313–319.

    Article  Google Scholar 

  20. K. Steeghs, A. Benders, F. Oerlemans, A. de Haan, A. A. Heerschap, W. Ruitenbeek, C. Jost, J. van Deursen, B. Perryman, D. Pette, M Bruckwilder, J. Koudijs, P. Jap, J. Veerkamp and B. Wieringa, Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies, Cell 89 (1997), 93–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Jeneson, J.A.L., Westerhoff, H.V., Kushmerick, M.J. (2004). Metabolic Control Analysis of the ATPase Network in Contracting Muscle: Regulation of Contractile Function and ATP Free Energy Potential. In: Deutsch, A., Howard, J., Falcke, M., Zimmermann, W. (eds) Function and Regulation of Cellular Systems. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7895-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7895-1_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9614-6

  • Online ISBN: 978-3-0348-7895-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics