Skip to main content

Mechanisms of resistance to macrolides, lincosamides, and ketolides

  • Chapter
Macrolide Antibiotics

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

Abstract

Macrolide (M), lincosamide (L), streptogramin B(SB), and ketolide (K) antibiotics are a structurally diverse group of antibiotics that have overlapping binding sites in the peptidyl transferase region of 23S rRNA. Some resistance determinants alter part of the common binding site, thereby reducing susceptibility to more than one of the MLSBK antibiotics simultaneously. The incidence of strains harboring resistance determinants to macrolide-lincosamide-streptogramin (MLSB) antibiotics has risen, especially over the past decade. Further, the microbes have collected mobile elements that help them evade the lethal effects of antibiotics. Bacterial resistance is mounted against MLSBantibiotics on three fronts: 1) target site mutations that prevent the binding of the antibiotic to its natural cellular target (ribosome), 2) efflux of the antibiotic or alterations in the permeability barrier as a means of protection, and 3) inactivation of the antimicrobial substance. Ketolides, a novel semi-synthetic class of 14—membered macrolides, have additional binding contacts within the 50S ribosome, making them less susceptible to some of the more prevalent resistance mechanisms in pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaneko T, McArthur H, Sutcliffe J (2000) Recent developments in the area of macrolide antibiotics. Exp Opin Ther Patents 10: 403–425

    Article  CAS  Google Scholar 

  2. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43: 2823–2830

    PubMed  CAS  Google Scholar 

  3. Sutcliffe J, Mueller J, Utt E (1999) Antibiotic resistance mechanisms of bacterial pathogens. In Manual of industrial microbiology and biotechnology (AL Demain, JE Davies, (eds).: ASM Press, Washington, D.C. 759–788

    Google Scholar 

  4. Weisblum B (2000) Resistance to macrolide-lincosamide-streptogramin antibiotics. In: Gram-positive pathogens (V Fischetti, (ed).: ASM Press, Washington, D.C. 682–698

    Google Scholar 

  5. Kirillov S, Porse BT, Vester B, Woolley P, Garrett RA (1997) Movement of the 3’-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Lett 406: 223–233

    Article  PubMed  CAS  Google Scholar 

  6. Rodriguez-Fonseca C, Amils R, Garrett RA (1995) Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol 247: 224–235

    Article  PubMed  CAS  Google Scholar 

  7. Verdier L, Bertho G, Gharbi-Benarous J, Girault J-P (2000) Lincomycin and clindamycin conformations. A fragment shared by macrolides, ketolides and lincosamides determined from TRNOE ribosome-bound conformations. Bioorg Med Chem 8: 1225–1243

    Article  PubMed  CAS  Google Scholar 

  8. Sor F, Fukuhara H (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acid Res 10: 6571–6577

    CAS  Google Scholar 

  9. Vester B, Douthwaite S (2000) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45: 1–12

    Article  Google Scholar 

  10. Fu W, Anderson M, Williams S, Tait-Kamradt A, Sutcliffe J, Retsema J (2000) In vitro derived macrolide resistant Streptococcus pneumoniae strains have ribosomal mechanism of resistance, abst. 07–10. In Program and abstracts of the 5th International Conference on Macrolides, Azalides, Streptogramins, Ketolides, and Oxazolidinones, Seville, Spain, 65

    Google Scholar 

  11. Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P, Petitpas J, Wondrack L, Walker A, Jacobs MR, Sutcliffe J (2000) Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother 44: 3395–3401

    Article  PubMed  CAS  Google Scholar 

  12. Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J (2000) Mutations in 23S rRNA and L4 ribosomal protein account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob Agents Chemother 44: 2118–2125

    Article  PubMed  CAS  Google Scholar 

  13. Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R (2000) Diversity of mutations in L22, L4 ribosomal proteins and 23S ribosomal RNA in pneumococcal mutants resistant to macrolides, telithromycin, and clindamycin selected in vitro abst. 1927. In Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 118

    Google Scholar 

  14. Chittum HS, Champney WS (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176: 6192–6198

    CAS  Google Scholar 

  15. Pardo D, Rosset R (1974) Genetic studies of erythromycin resistant mutants of Escherichia coli. Mol Gen Genet 135: 257–268

    CAS  Google Scholar 

  16. Schnier J, Gewitz HS, Behrens SE, Lee A, Ginther C, Leighton T (1990) Isolation and characterization of Bacillus stearothermophilus 30S and 50S ribosomal protein mutations. J Bacteriol 172: 7306–7309

    PubMed  CAS  Google Scholar 

  17. Sharrock RA, Leighton T, Wittmann HG (1981) Macrolide and aminoglycoside antibiotic resistance mutations in the Bacillus subtilis ribosome resulting in temperature-sensitive sporulation. Mol Gen Genet 183: 538–543

    Article  PubMed  CAS  Google Scholar 

  18. Tipper DJ, Johnson CW, Ginther CL, Leighton T, Wittmann HG (1977) Erythromycin resistant mutations in Bacillus subtilis cause temperature sensitive sporulation. Mol Gen Genet 150: 147–159

    Article  PubMed  CAS  Google Scholar 

  19. Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39: 577–585

    Article  PubMed  CAS  Google Scholar 

  20. Wittmann HG, Stoffler G, Apirion D, Rosen L, Tanaka K, Tamaki M, Takata R, Dekio S, Otaka E (1973) Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet 127: 175–189

    Article  PubMed  CAS  Google Scholar 

  21. Sutcliffe J, Tait-Kamradt A, Walker A, Petitpas J (2000) Macrolide resistance in pneumococci: Analysis of resistant isolates obtained by passage with telithromycin, abst. 1925. In Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chermotherapy, Toronto, Ontario, Canada, 117

    Google Scholar 

  22. Gregory ST, Dahlberg AE (1999) Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol 289: 827–834

    Article  PubMed  CAS  Google Scholar 

  23. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920

    Article  PubMed  CAS  Google Scholar 

  24. Malbruny B, Canu A, Bozdogan B, Fantin B, Leclercq R (2000) Quinupristin/Dalfopristin Resistance Mutation Reveals the Involvement of L22 Ribosomal Protein in Synergy Between Quinupristin and Dalfopristin, abst. 1928. In Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 118

    Google Scholar 

  25. Baranov PV, Kubarenko AV, Gurvich OL, Shamolina TA, Brimacombe R (1999) The Database of Ribosomal Cross-links: an update. Nucleic Acids Res 27: 184–185

    Article  PubMed  CAS  Google Scholar 

  26. Hansen HL, Mauvais P, Douthwaite S (1999) The macrolide-ketolide antibiotic binding site is formed by structures in domain II and V of 23S ribosomal RNA. Mol Microbiol 31: 623–631

    Article  PubMed  CAS  Google Scholar 

  27. Poulsen SM, Kofoed C, Vester B (2000) Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J Mol Biol 304: 471–481

    Article  PubMed  CAS  Google Scholar 

  28. Douthwaite 5, Hansen LH, Mauvais P (2000) Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol 36: 183–193

    Article  PubMed  CAS  Google Scholar 

  29. Xiong L, Shah S, Mauvais P, Mankin AS (1999) A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol Microbiol 31: 633–639

    Article  PubMed  CAS  Google Scholar 

  30. Mankin A (2000) Interaction of Macrolides with the Ribosome, abst. 1132. In Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 534

    Google Scholar 

  31. Asai T, Condon C, Voulgaris J, Zaporojets D, Shen B, Al-Omar M, Squires C, Squires CL (1999) Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J Bacteriol 181: 3803–3809

    PubMed  CAS  Google Scholar 

  32. Ettayebi M, Prasad SM, Morgan EA (1985) Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol 162: 551–557

    CAS  Google Scholar 

  33. Douthwaite S, Aagaard C (1993) Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop. J Mol Biol 232: 725–731

    Article  PubMed  CAS  Google Scholar 

  34. Douthwaite S (1992) Functional interactions within 23S rRNA involving the peptidyltransferase center. J Bacteriol 174: 1333–1338

    PubMed  CAS  Google Scholar 

  35. Douthwaite S, Prince JB, Noller HF (1985) Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant. Proc Natl Acad Sci USA 82: 8330–8334

    Article  PubMed  CAS  Google Scholar 

  36. Tenson T, DeBlasio A, Mankin A (1996) A functional peptide encoded in the Escherichia coli 23S rRNA. Proc Nall Acad Sci USA 93: 5641–5646

    Article  CAS  Google Scholar 

  37. Tenson T, Xiong L, Kloss P, Mankin AS (1997) Erythromycin resistance peptides selected from random peptide libraries. J Biol Chem 272: 17425–17430

    Article  PubMed  CAS  Google Scholar 

  38. Dam M, Douthwaite S, Tenson T, Mankin AS (1996) Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance. J Mol Biol 259: 1–6

    Article  PubMed  CAS  Google Scholar 

  39. Tripathi S, Kloss PS, Mankin AS (1998) Ketolide resistance conferred by short peptides. J Biol Chem 273: 20073–20077

    Article  PubMed  CAS  Google Scholar 

  40. Chabbert Y (1956) Antagonisme in vitro entre l’erythromycine et la spiramycine. Ann Inst Pasteur (Paris) 90: 787–790

    CAS  Google Scholar 

  41. Garrod LP (1957) The erythromycin group of antibiotics. Br Med J 2: 57–63

    Article  PubMed  CAS  Google Scholar 

  42. Jones WF, Nichols RF, Finland M (1966) Development of resistance and cross-resistance in vitro to erythromycin, carbomycin, oleandomycin and streptogramin. Proc Soc Experiment Biol Med 93: 388–393

    Google Scholar 

  43. Fernandez-Munoz R, Monro RE, Torres-Pinedo R, Vazquez D (1971) Substrate-and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Eur J Biochem 23: 185–193

    Article  PubMed  CAS  Google Scholar 

  44. Moazed D, Noller HF (1987) Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69: 879–884

    Article  PubMed  CAS  Google Scholar 

  45. Sander P, Prammananan T, Meier A, Frischkom K, Bottger EC (1997) The role of ribosomal RNAs in macrolide resistance. Mol Microbiol 26: 469–480

    Article  PubMed  CAS  Google Scholar 

  46. Pemodet JL, Fish S, Blondelet-Rouault MH, Cundliffe E (1996) The macrolide-lincosamidestreptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Antimicrob Agents Chemother 40: 581–585

    Google Scholar 

  47. Capobianco JO, Cao Z, Shortridge VD, Ma Z, Flamm RK, Zhong P (2000) Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob Agents Chemother 44: 1562–1567

    Article  CAS  Google Scholar 

  48. Denis A, Agouridas C, Auger JM, Benedetti Y, Bonnefoy A, Bretin F, Chantot JF, Dussarat A, Fromentin C, D’Ambrieres SG, Lachaud S, Laurin P, Le Martret 0, Loyau V, Tessot N, Pejac JM, Perron S (1999) Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. Bioorg Med Chem Lett 9: 3075–3080

    CAS  Google Scholar 

  49. Goldman RC, Kadam SK (1989) Binding of novel macrolide structures to macrolides-lincosamides-streptogramin B-resistant ribosomes inhibits protein synthesis and bacterial growth. Antimicrob Agents Chemother 33: 1058–1066

    Article  PubMed  CAS  Google Scholar 

  50. Arthur M, Brisson-Noel A, Courvalin P (1987) Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. J Antimicrob Chemother 20: 783–802

    Article  PubMed  CAS  Google Scholar 

  51. Seppala H, Skumik M, Soini H, Roberts MC, Huovinen P (1998) A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother 42: 257–262

    CAS  Google Scholar 

  52. Cundliffe E (1992) Self-protection mechanisms in antibiotic producers. Ciba Found Symp 171: 199–208

    PubMed  CAS  Google Scholar 

  53. Hara Q, Hutchinson CR (1990) Cloning of midecamycin (MLS)-resistance genes from Streptomyces mycarofaciens Streptomyces lividans and Streptomyces coelicolor A3. J Antibiot 43: 977–991

    Article  PubMed  CAS  Google Scholar 

  54. Pereda A, Summers R, Katz L (1997) Nucleotide sequence of the ermE distal flank of the erythromycin biosynthesis cluster in Saccharopolyspora erythraea. Gene 193: 65–71

    CAS  Google Scholar 

  55. Fouces R, Mellando E, Diez B, Barredo JL (1999) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145: 855–868

    Article  PubMed  CAS  Google Scholar 

  56. Liu M, Kirpekar F, Van Wezel GP, Douthwaite S (2000) The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol Microbiol 37: 811–820

    Article  PubMed  CAS  Google Scholar 

  57. Gustafsson C, Persson BC (1998) Identification of the rrmA gene encoding the 23S rRNA m’G745 methyltransferase in Escherichia coli and characterization of an m’G745-deficient mutant. J Bacteriol 180: 359–365

    PubMed  CAS  Google Scholar 

  58. Pemodet JL, Gourmelen A, Blondelet-Rouault MH, Cundliffe E (1999) Dispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens. Microbiology 145: 2355–2364

    Google Scholar 

  59. Arisawa A, Tsunekawa H, Okamura K, Okamoto R (1995) Nucleotide sequence analysis of the carbomycin biosynthetic genes including the 3–0-acyltransferase gene from Streptomyces thermotolerans. Biosci Biotechnol Biochem 59: 582–588

    Article  CAS  Google Scholar 

  60. Quiros LM, Aguirrezabalaga I, Olano C, Mendez C, Salas JA (1998) Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 28: 1177–1185

    Article  CAS  Google Scholar 

  61. Schmitz FJ, Sadurski R, Kray A, Boos M, Geisel R, Kohrer K, Verhoef J, Fluit AC (2000) Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J Antimicrob Chemother 45: 891–894

    Article  PubMed  CAS  Google Scholar 

  62. Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C (2000) Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother 44: 967–971

    Article  PubMed  CAS  Google Scholar 

  63. Syrogiannopoulos GA, Grivea IN, Tait-Kamradt A, Katopodis GD, Beratis NG, Sutcliffe J, Appelbaum PC, Davies TD (2000) Identification of erm(A) Erythromycin Resistance Methylase Gene in Streptococcus pneumoniae Isolated in Greece. Antimicrob Agents Chemother 45: 342–344

    Article  Google Scholar 

  64. Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22: 521–565

    Article  PubMed  CAS  Google Scholar 

  65. Yu L, Petros AM, Schnuchel A, Zhong P, Severin JM, Walter K, Holzman TF, Fesik SW (1997) Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamidestreptogramin antibiotic resistance. Nat Struct Biol 4: 483–489

    Article  PubMed  CAS  Google Scholar 

  66. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C (1999) The 2.2 A structure of the rRNA methyltransferase ErmC’ and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol Biol 289: 277–291

    Article  PubMed  CAS  Google Scholar 

  67. Bussiere DE, Muchmore SW, Dealwis CG, Schluckebier G, Nienaber VL, Edalji RP, Walter KA, Ladror US, Holzman TF, Abad-Zapatero C (1998) Crystal structure of ErmC’, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37: 7103–7112

    Article  PubMed  CAS  Google Scholar 

  68. Clancy J, Schmieder BJ, Petitpas JW, Manousos M, Williams JA, Faiella JA, Girard AE, McGuirk PR (1995) Assays to detect and characterize synthetic agents that inhibit the ErmC methyltransferase. J Antibiot 48: 1273–1279

    Article  PubMed  CAS  Google Scholar 

  69. Hanessian S, Sgarbi PWM (2000) Design and synthesis of mimics of S-adenosyl-L-homocysteine as potential inhibitors of erythromycin methyltransferases. Bioorg Med Chem Lett 10: 433–437

    Article  PubMed  CAS  Google Scholar 

  70. Hajduk PJ, Dinges J, Schkeryantz JM, Janowick D, Kaminski M, Tufano M, Augeri DJ, Petros A, Nienaber V, Zhong P, Hammond R, Coen M, Beutel B, Katz L, Fesik SW (1999) Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J Med Chem 42: 3852–3859

    Article  PubMed  CAS  Google Scholar 

  71. Horinouchi S, Weisblum B (1980) Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA 77: 7079–7083

    Article  PubMed  CAS  Google Scholar 

  72. Gryczan TJ, Grandi G, Hahn J, Grandi R, Dubnau D (1980) Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res 8: 6081–6097

    Article  PubMed  CAS  Google Scholar 

  73. Rosato A, Vicarini H, Leclercq R (1999) Inducible or constitutive expression of resistance in clinical isolates of streptococci and enterococci cross-resistant to erythromycin and lincomycin. J Antimicrob Chemother 43: 559–562

    Article  PubMed  CAS  Google Scholar 

  74. Weisblum B (1995) Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39: 797–805

    Article  PubMed  CAS  Google Scholar 

  75. Sandler P, Weisblum B (1989) Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5’-to-3’ nucleolytic cleavage of the ermA transcript. J Bacteriol 171: 6680–6688

    PubMed  CAS  Google Scholar 

  76. Bechhofer DH, Dubnau D (1987) Induced mRNA stability in Bacillus subtilis. Proc Nall Acad Sci USA 84: 498–502

    Article  CAS  Google Scholar 

  77. Denoya CD, Bechhofer DH, Dubnau D (1986) Translational autoregulation of ermC 23S rRNA methyltransferase expression in Bacillus subtilis. J Bacteriol 168: 1133–1141

    CAS  Google Scholar 

  78. Horinouchi S, Byeon W-H, Weisblum B (1983) A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. J Bacteriol 154: 1252–1262

    CAS  Google Scholar 

  79. Monod M, Mohan S, Dubnau D (1987) Cloning and analysis of ermG a new macrolidelincosamide-streptogramin B resistance element from Bacillus sphaericus. J Bacteriol 169: 340–350

    PubMed  CAS  Google Scholar 

  80. Kwak JH, Choi EC, Weisblum B (1991) Transcriptional attenuation control of ennK a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus lichenifonnis. J Bacteriol 173: 4725–4735

    CAS  Google Scholar 

  81. Choi SS, Kim SK, Oh TG, Choi EC (1997) Role of mRNA termination in regulation of ermK. J Bacteriol 179: 2065–2067

    CAS  Google Scholar 

  82. Gryczan T, Israeli-Reches M, Del Bue M, Dubnau D (1984) DNA sequence and regulation of ermD a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. Mol Gen Genet 194: 349–356

    Article  CAS  Google Scholar 

  83. Kamimiya S, Weisblum B (1988) Translational attenuation control of ermSF an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. J Bacteriol 170: 1800–1811

    CAS  Google Scholar 

  84. Kelemen GH, Zalacain M, Culebras E, Seno ET, Cundliffe E (1994) Transcriptional attenuation control of the tylosin-resistance gene tlrA in Streptomyces fradiae. Mol Microbiol 14: 833–842

    Article  CAS  Google Scholar 

  85. Lampson BC, Parisi JT (1986) Naturally occurring Staphylococcus epidermidis plasmid expressing constitutive macrolide-lincosamide-streptogramin B resistance contains a deleted attenuator. J Bacteriol 166: 479–483

    PubMed  CAS  Google Scholar 

  86. Martin B, Alloing G, Mejean V, Claverys JP (1987) Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAM beta 1 results from deletion of 5’ leader peptide sequences. Plasmid 18: 250–253

    Article  PubMed  CAS  Google Scholar 

  87. Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA, Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ennGT) from Lactobacillus reuteri 100–63. Plasmid 31: 60–71

    Article  PubMed  CAS  Google Scholar 

  88. Oliveira SS, Murphy E, Gamon MR, Bastos MC (1993) pRJ5: a naturally occurring Staphylococcus aureus plasmid expressing constitutive macrolide-lincosamide-streptogramin B resistance contains a tandem duplication in the leader region of the ennC gene. J Gen Microbiol 139 (Pt 7): 1461–1467

    Article  PubMed  CAS  Google Scholar 

  89. Lodder G, Werckenthin C, Schwarz S, Dyke K (1997) Molecular analysis of naturally occuring ermC-encoding plasmids in staphylococci isolated from animals with and without previous contact with macrolide/lincosamide antibiotics. FEMS Immun Med Microbiol 18: 7–15

    Article  CAS  Google Scholar 

  90. Leclercq R, Bauduret F, Soussy CJ (1989) Selection of constitutive mutants of gram-positive cocci inducible resistant to macrolides, lincosamides and streptogramins (MLS): comparison of the selective effects of the MLS. Pathol Biol (Paris) 37: 568–572

    CAS  Google Scholar 

  91. Hahn J, Grandi G, Gryczan Ti, Dubnau D (1982) Translational attenuation of ennC: a deletion analysis. Mol Gen Genet 186: 204–216

    Article  PubMed  CAS  Google Scholar 

  92. Watanakunakorn C (1976) Clindamycin therapy of Staphylococcus aureus endocarditis. Clinical relapse and development of resistance to clindamycin, lincomycin and erythromycin. Am J Med 60: 419–425

    Article  PubMed  CAS  Google Scholar 

  93. Kamimiya S, Weisblum B (1997) Induction of ermSV by 16-membered-ring macrolide antibiotics. Antimicrob Agents Chemother 41: 530–534

    PubMed  CAS  Google Scholar 

  94. Oh TG, Kwon AR, Choi EC (1998) Induction of ermAMR from a clinical strain of Enterococcus faecalis by 16-membered-ring macrolide antibiotics. J Bacteriol 180: 5788–5791

    PubMed  CAS  Google Scholar 

  95. Bonnefoy A, Girard AM, Agouridas C, Chantot JF (1997) Ketolides lack inducibility properties of MLS(B) resistance phenotype. J Antimicrob Chemother 40: 85–90

    Article  PubMed  CAS  Google Scholar 

  96. Zhong P, Cao Z, Hammond R, Chen Y, Beyer J, Shortridge VD, Phan LY, Pratt S, Capobianco J, Reich KA, Flamm RK, Or YS, Katz L (1999) Induction of ribosome methylation in MLS-resistant Streptococcus pneumoniae by macrolides and ketolides. Microb Drug Resist 5: 183–188

    Article  PubMed  CAS  Google Scholar 

  97. Saito T, Shimizu M, Mitsuhashi S (1971) Macrolide resistance in staphylococci. Ann New York Acad Sci 182: 267–278

    Article  CAS  Google Scholar 

  98. Sutcliffe J, Tait-Kamradt A, Brennan L, Duignan J, Wondrack L, Walker A, Baima E, Mueller J (2000) Heterogeneous ketolide resistance in erm(B)’ Streptococcus pneumoniae strains, abst. 1926. In Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 117, Toronto, Ontario, Canada

    Google Scholar 

  99. Marshall VP, Cialdella JI, Baczynskyj L, Liggett WF, Johnson RA (1989) Microbial 0- phosphorylation of macrolide antibiotics. J Antibiot 42: 132–134

    Article  PubMed  CAS  Google Scholar 

  100. Wiley PF, Baczynskyj L, Dolak LA, Cialdella JI, Marshall VP (1987) Enzymatic phosphorylation of macrolide antibiotics. J Antibiot 40: 195–201

    Article  PubMed  CAS  Google Scholar 

  101. Marshall VP, Liggett WF, Cialdella JI (1989) Enzymic inactivation of lincosaminide and macrolide antibiotics: divalent metal cation and coenzyme specificities. J Antibiot 42: 826–830

    Article  PubMed  CAS  Google Scholar 

  102. Katayama J, Okada H, O’Hara K, Noguchi N (1998) Isolation and characterization of two plasmids that mediate macrolide resistance in Escherichia coli: transferability and molecular properties. Biol Pharm Bull 21: 326–329

    Article  PubMed  CAS  Google Scholar 

  103. Katayama J, Noguchi N (1999) Nucleotide sequence of the gene cluster containing the mphB gene for macrolide 2’-phosphotransferase II. Biol Pharm Bull 22: 227–228

    Article  PubMed  CAS  Google Scholar 

  104. Kim S-K, Baek M-C, Choi S-S, Kim B-K, Choi E-C (1996) Nucleotide sequence, expression and transcriptional analysis of the Escherichia coli mphK gene encoding macrolide-phosphotransferase K. Mol Cells 6: 153–160

    Google Scholar 

  105. Kono M, O’Hara K, Ebisu T (1992) Purification and characterization of macrolide 2’-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. FEMS Microbiol Lett 76: 89–94

    PubMed  CAS  Google Scholar 

  106. Leclercq R, Courvalin P (1991) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35: 1267–1272

    Article  PubMed  CAS  Google Scholar 

  107. Leclercq R, Courvalin P (1991) Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother 35: 1273–1276

    Article  PubMed  CAS  Google Scholar 

  108. Matsuoka M, Endou K, Kobayashi H, Inoue M, Nakajima Y (1997) A dyadic plasmid that shows MLS and PMS resistance in Staphylococcus aureus. FEMS Microbiol Lett 148: 91–96

    Article  CAS  Google Scholar 

  109. Matsuoka M, Endou K, Kobayashi H, Inoue M, Nakajima Y (1998) A plasmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol Lett 167: 221–227

    Article  CAS  Google Scholar 

  110. Noguchi N, Emura A, Matsuyama H, O’Hara K, Sasatsu M, Kono M (1995) Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2’-phosphotransferase I in Escherichia coli. Antimicrob Agents Chemother 39: 2359–2363

    Article  CAS  Google Scholar 

  111. Noguchi N, Katayama J, O’Hara K (1996) Cloning and nucleotide sequence of the mphB gene for macrolide 2’- phosphotransferase II in Escherichia coli. FEMS Microbiol Lett 144: 197–202

    CAS  Google Scholar 

  112. Noguchi N, Tamura Y, Katayama J, Narui K (1998) Expression of the mphB gene for macrolide 2’-phosphotransferase II from Escherichia coli in Staphylococcus aureus. FEMS Microbiol Lett 159: 337–342

    CAS  Google Scholar 

  113. Noguchi N, Katayama J (1998) Expression in Pseudomonas aeruginosa of an erythromycin-resistance determinant that encodes the mphA gene for macrolide 2’-phosphotransferase I from Escherichia coli. Biol Pharm Bull 21: 191–193

    CAS  Google Scholar 

  114. O’Hara K, Kanda T, Ohmiya K, Ebisu T, Kono M (1989) Purification and characterization of macrolide 2’-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother 33: 1354–1357

    Article  PubMed  Google Scholar 

  115. O’Hara K, Kawabe T, Taniguchi K, Nakamura A, Sawai T (1997) A new macrolide 2’phosphotransferase in E. coli abst. C-67. In Program and abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy p. 57, Toronto, Ontario, Canada

    Google Scholar 

  116. O’Hara K, Yamamoto K (1996) Reaction of roxithromycin and clarithromycin with macrolideinactivating enzymes from highly erythromycin-resistant Escherichia coli. Antimicrob Agents Chemother 40: 1036–1038

    Google Scholar 

  117. Taniguchi K, Nakamura A, Tsurubuchi K, Ishii A, O’Hara K, Sawai T (1999) Identification of functional amino acids in the macrolide 2’- phosphotransferase II. Antimicrob Agents Chemother 43: 2063–2065

    PubMed  CAS  Google Scholar 

  118. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L (1996) Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40: 2562–2566

    PubMed  CAS  Google Scholar 

  119. Cheng J, Grebe T, Wondrack L, Courvalin P, Sutcliffe J (1999) Characterization of genes involved in erythromycin resistance in a clinical strain of Staphylococcus aureus abst. 837. In rogram and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. p. 114, San Francisco, CA

    Google Scholar 

  120. Ainsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C (1998) Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 180: 5836–5843

    CAS  Google Scholar 

  121. Ross JI, Farrell AM, Eady EA, Cove JH, Cunliffe WJ (1989) Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. J Antimicrob Chemother 24: 851–862

    Article  CAS  Google Scholar 

  122. Taniguchi K, Nakamura A, Tsurubuchi K, Ishii A, O’Hara K, Sawai T (1999) Appearance in Japan of highly macrolide-resistant Escherchia coli producing macrolide 2’-phosphotransferace II. Microbios 97: 137–144

    PubMed  CAS  Google Scholar 

  123. Alonso A, Sanchez P, Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44: 1778–1782

    Article  PubMed  CAS  Google Scholar 

  124. Yazawa K, Mikami Y, Sakamoto T, Ueno Y, Morisaki N, Iwasaki S, Furihata K (1994) Inactivation of the macrolide antibiotics erythromycin, midecamycin, and rokitamycin by pathogenic Nocardia species. Antimicrob Agents Chemother 38: 2197–2199

    Article  PubMed  CAS  Google Scholar 

  125. Arthur M, Autissier D, Courvalin P (1986) Analysis of the nucleotide sequence of the ereB gene encoding the erythromycin esterase type II. Nucleic Acids Res 14: 4987–4999

    Article  PubMed  CAS  Google Scholar 

  126. Ounissi H, Courvalin P (1985) Nucleotide sequence of the gene ereA encoding the erythromycin esterase in Escherichia coli. Gene 35: 271–278

    CAS  Google Scholar 

  127. Arthur M, Andremont A, Courvalin P (1987) Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother 31: 404–409

    Article  PubMed  CAS  Google Scholar 

  128. Plante I, Roy PH (1998) Sequencing and PCR mapping of integrons reveals a novel combination of resistance genes and an ereA gene cassette in the multiresistant strain Providencia stuartii 1723. GenBank accession number X03988

    Google Scholar 

  129. Wondrack L, Massa M, Yang BV, Sutcliffe J (1996) Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides. Antimicrob Agents Chemother 40: 992–998

    PubMed  CAS  Google Scholar 

  130. Barthelemy P, Autissier D, Gerbaud G, Courvalin P (1984) Enzymic hydrolysis of erythromycin by a strain of Escherichia coli. A new mechanism of resistance. J Antibiot 37: 1692–1696

    Article  PubMed  CAS  Google Scholar 

  131. Sasaki J, Mizoue K, Morimoto S, Omura S (1996) Microbial glycosylation of macrolide antibiotics by Streptomyces hygroscopicus ATCC 31080 and distribution of a macrolide glycosyl transferase in several Streptomyces strains. J Antibiot 49: 1110–1118

    Article  PubMed  CAS  Google Scholar 

  132. Jenkins G, Cundliffe E (1991) Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 108: 55–62

    Article  PubMed  CAS  Google Scholar 

  133. Cundliffe E (1992) Resistance to macrolides and lincosamides in Streptomyces lividans and to aminoglycosides in Micromonospora purpurea. Gene 115: 75–84

    CAS  Google Scholar 

  134. Kuo MS, Chirby DG, Argoudelis AD, Cialdella JI, Coats JH, Marshall VP (1989) Microbial glycosylation of erythromycin A. Antimicrob Agents Chemother 33: 2089–2091

    Article  PubMed  CAS  Google Scholar 

  135. Schulman M, Doherty P, Arison B (1993) Microbial conversion of avermectins by Saccharopolyspora erythraea: glycosylation at C-4’ and C-4“. Antimicrob Agents Chemother 37: 1737–1741

    Article  PubMed  CAS  Google Scholar 

  136. Nikaido H (1998) Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 27 Suppl 1: S32—S41

    Article  PubMed  CAS  Google Scholar 

  137. Germ M, Yoshihara E, Yoneyama H, Nakae T (1999) Interplay between the efflux pump and the outer membrane permeability barrier in fluorescent dye accumulation in Pseudomonas aeruginosa. Biochem Biophys Res Commun 261: 452–455

    Article  CAS  Google Scholar 

  138. Li XZ, Zhang L, Poole K (2000) Interplay between the MexA-MexB-oprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45: 433–436

    Article  CAS  Google Scholar 

  139. Saier J, M.H., Beaty JT, Goffeau A, Harley KT, Heijne WHM, Huang S-C, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng T-T, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1: 257–279

    CAS  Google Scholar 

  140. Zgurskaya HI, Nikaido H (1999) Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci USA 96: 7190–7195

    Article  CAS  Google Scholar 

  141. Zgurskaya HI, Nikaido H (1999) AcrA is a highly asymmetric protein capable of spanning the periplasm. J Mol Biol 285: 409–420

    Article  PubMed  CAS  Google Scholar 

  142. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein To1C central to multidrug efflux and protein export. Nature 405: 914–919

    Article  PubMed  CAS  Google Scholar 

  143. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43: 415–417

    CAS  Google Scholar 

  144. Zhao Q, Li XZ, Srikumar R, Poole K (1998) Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 42: 1682–1688

    PubMed  CAS  Google Scholar 

  145. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44: 2242–2246

    Article  CAS  Google Scholar 

  146. Zhang L, Li XZ, Poole K (2000) Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother 44: 287–293

    Article  PubMed  CAS  Google Scholar 

  147. Lucas CE, Hagman KE, Levin JC, Stein DC, Shafer WM (1995) Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol 16: 1001–1009

    Article  PubMed  CAS  Google Scholar 

  148. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri 0 (1998) mmr a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180: 6068–6071

    PubMed  Google Scholar 

  149. Edgar R, Bibi E (1997) MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol 179: 2274–2280

    PubMed  CAS  Google Scholar 

  150. Jager W, Kalinowski J, Puhler A (1997) A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli. J Bacterial 179: 2449–2451

    CAS  Google Scholar 

  151. Edgar R, Bibi E (1999) A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J 18: 822–832

    Article  PubMed  CAS  Google Scholar 

  152. Zheleznova EE, Markham P, Edgar R, Bibi E, Neyfakh AA, Brennan RG (2000) A structure-based mechanism for drug binding by multidrug transporters. Trends Biochem Sci 25: 39–43

    Article  PubMed  CAS  Google Scholar 

  153. Zheleznova EE, Markham PN, Neyfakh AA, Brennan RG (1999) Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96: 353–362

    Article  PubMed  CAS  Google Scholar 

  154. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, Yuan W, Sutcliffe J (1997) mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother 41: 2251–2255

    PubMed  CAS  Google Scholar 

  155. Sutcliffe J, Tait-Kamradt A, Wondrack L (1996) Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system . Antimicrob Agents Chemother 40: 1817–1824

    PubMed  CAS  Google Scholar 

  156. Clancy J, Petitpas J, Dib-Hajj F, Yuan W, Cronan M, Kamath AV, Bergeron J, Retsema JA (1996) Molecular cloning and functional analysis of a novel macrolide-resistance determinant mefA from Streptococcus pyogenes. Mol Microbiol 22: 867–879

    Article  CAS  Google Scholar 

  157. Johnston NJ, De Azavedo JC, Kellner JD, Low DE (1998) Prevalence and characterization of the mechanisms of macrolide, lincosamide, and streptogramin resistance in isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 42: 2425–2426

    CAS  Google Scholar 

  158. Klugman KP, Capper T, Widdowson CA, Koonthof HJ, Moser W (1998) Increased activity of 16-membered lactone ring macrolides against erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae: characterization of South African isolates. J Antimicrob Chemother 42: 729–734

    Article  PubMed  CAS  Google Scholar 

  159. Limia A, Jimenez ML, Delgado T, Sanchez I, Lopez S, Lopez-Brea M (1998) Phenotypic characterization of erythromycin resistance in strains of the genus Streptococcus isolated from clinical specimens. Rev Esp Quimioter 11: 216–220

    PubMed  CAS  Google Scholar 

  160. Setchanova L, Tomasz A (1999) Molecular characterization of penicillin-resistant Streptococcus pneumoniae isolates from Bulgaria. J Clin Microbiol 37: 638–648

    PubMed  CAS  Google Scholar 

  161. Kataja J, Huovinen P, Skurnik M, Seppala H (1999) Erythromycin resistance genes in group A streptococci in Finland. The Finnish Study Group for Antimicrobial Resistance. Antimicrob Agents Chemother 43: 48–52

    PubMed  CAS  Google Scholar 

  162. Orden B, Perez-Trallero E, Montes M, Martinez R (1998) Erythromycin resistance of Streptococcus pyogenes in Madrid. Pediatr Infect Dis J 17: 470–473

    Article  PubMed  CAS  Google Scholar 

  163. Perez-Trallero E, Urbieta M, Montes M, Ayestaran I, Marimon JM (1998) Emergence of Streptococcus pyogenes strains resistant to erythromycin in Gipuzkoa, Spain. Eur J Clin Microbiol Infec Dis 17: 25–31

    Article  CAS  Google Scholar 

  164. de Azavedo JC, Yeung RH, Bast DJ, Duncan CL, Borgia SB, Low DE (1999) Prevalence and mechanisms of macrolide resistance in clinical isolates of group A streptococci from Ontario, Canada. Antimicrob Agents Chemother 43: 2144–2147

    PubMed  Google Scholar 

  165. Kataja J, Seppala H, Skurnik M, Sarkkinen H, Huovinen P (1998) Different erythromycin resistance mechanisms in group C and group G streptococci. Antimicrob Agents Chemother 42: 1493–1494

    PubMed  CAS  Google Scholar 

  166. Luna VA, Cousin S, Jr., Whittington WL, Roberts MC (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 44: 2503–2506

    Article  CAS  Google Scholar 

  167. Luna VA, Coates P, Eady EA, Cove JH, Nguyen TT, Roberts MC (1999) A variety of gram-positive bacteria carry mobile mef genes. J Antimicrob Chemother 44: 19–25

    Article  PubMed  CAS  Google Scholar 

  168. Santagati M, Iannelli F, Oggioni MR, Stefani S, Pozzi G (2000) Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob Agents Chemother 44: 2585–2587

    Article  CAS  Google Scholar 

  169. Gay K, Stephens DS (2001) Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae J Infect Dis 184: 56–65

    Article  CAS  Google Scholar 

  170. Brennan L, Duignan J, Petitpas J, Anderson M, Fu W, Retsema J, Rainville J, Smyth D, Su W, Sutcliffe J (1998) CP-544372: MIC90 studies and killing kinetics against key respiratory tract pathogens, abst. F-124. In Program and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy p. 264, San Diego, California USA

    Google Scholar 

  171. Arpin C, Daube H, Tessier F, Quentin C (1999) Presence of mefA and mefE Genes in Streptococcus agalactiae. Antimicrob Agents Chemother 43: 944–946

    CAS  Google Scholar 

  172. Poutanen SM, de Azavedo J, Willey BM, Low DE, MacDonald KS (1999) Molecular characterization of multidrug resistance in Streptococcus mitis. Antimicrob Agents Chemother 43: 1505–1507

    CAS  Google Scholar 

  173. Fraimow H, Knob C (1997) Amplification of macrolide efflux pumps msr and mef from Enterococcus faecium by polymerase chain reaction. In 98th General Meeting of the American Society for Microbiology p. 22, American Society for Microbiology, Miami Beach, Florida

    Google Scholar 

  174. Arpin C, Canron MH, Noury P, Quentin C (1999) Emergence of mefA and mefE genes in beta-haemolytic streptococci and pneumococci in France. J Antimicrob Chemother 44: 133–134

    Article  PubMed  CAS  Google Scholar 

  175. Perreten V, Schwarz F, Boeglin M, Cresta L, Dawen G, Teuber M (1997) Antibiotic resistance spread in food. Nature 389: 801–802

    Article  PubMed  CAS  Google Scholar 

  176. Sutcliffe J (1999) Resistance to macrolides mediated by efflux mechanisms. Curr Opin Investig Drugs 1: 403–412

    CAS  Google Scholar 

  177. Rosato A, H. V, Bonnefoy A, Chantot JF, Leclercq R (1998) A new ketolide, HMR 3004, active against streptococci inducibly resistant to erythromycin. Antimicrob Agents Chemother 42: 1392–1396

    PubMed  CAS  Google Scholar 

  178. Jones PM, George AM (1999) Subunit interactions in ABC transporter: towards a functional architecture. FEMS Microbiol Lett 179: 187–202

    Article  PubMed  CAS  Google Scholar 

  179. Janosi L, Nakajima Y, Hashimoto H (1990) Characterization of plasmids that confer inducible resistance to 14-membered macrolides and streptogramin type B antibiotics in Staphylococcus aureus. Microbiol Immunol 34: 723–735

    CAS  Google Scholar 

  180. Eady EA, Ross JI, Tipper JL, Walters CE, Cove JH, Noble WC (1993) Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother 31: 211–217

    Article  PubMed  CAS  Google Scholar 

  181. Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J (1999) Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother 43: 1062–1066

    PubMed  CAS  Google Scholar 

  182. Martineau F, Picard FJ, Lansac N, Menard C, Roy PH, Ouellette M, Bergeron MG (2000) Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 44: 231–238

    Article  CAS  Google Scholar 

  183. Milton ED, Hewitt CL, Harwood CR (1992) Cloning and sequencing of a plasmid-mediated erythromycin determinant from Staphylococcus xylosus. FEMS Microbiol Lett 97: 141–147

    Article  CAS  Google Scholar 

  184. Singh KV, Malathum K, Murray BE (2001) Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob Agents Chemother 45: 263–266

    Article  PubMed  CAS  Google Scholar 

  185. Neu HC (1993) Activity of macrolides against common pathogens in vitro Arnette, Blackwell, Paris, France

    Google Scholar 

  186. Rodriguez AM, Olano C, Vilches C, Mendez C, Salas JA (1993) Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol Microbiol 8: 571–582

    Article  PubMed  CAS  Google Scholar 

  187. Olano C, Rodriguez AM, Mendez C, Salas JA (1995) A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 16: 333–343

    Article  CAS  Google Scholar 

  188. Schoner B, Geistlich M, Rosteck JP, Rao RN, Seno E, Reynolds P, Cox K, Burgett S, Hershberger C (1992) Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene 115: 93–96

    Article  PubMed  CAS  Google Scholar 

  189. O’Neill MP, Eady EA, Radford A, Baumberg 5, Cove JH (1995) The use of PCR to isolate a putative ABC transporter from Saccharopolyspora erythraea. FEMS Microbiol Lett 131: 189–195

    Article  Google Scholar 

  190. Charvalos E, Tselentis Y, Hamzehpour Mm, Kiöhler T, Pechere J-C (1995) Evidence for an efflux pump in multidrug-resistant Campylobacter jejuni. Antimicrob Agents Chemother 39: 2019–2022

    Article  CAS  Google Scholar 

  191. George AM (1996) Multidrug resistance in enteric and other gram-negative bacteria. FEMS Microb Lett 139: 1–10

    Article  CAS  Google Scholar 

  192. Clancy J, Dib-Hajj F, Petitpas JW, Yuan W (1997) Cloning and characterization of a novel macrolide efflux gene mreA from Streptococcus agalactiae. Antimicrob Agents Chemother 41: 2719–2723

    CAS  Google Scholar 

  193. Gervais C, Leclercq R (1999) The macrolide resistance gene mreA is ubiquitous in this bacterial species, abst. 840. In Program and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 115, San Franscisco, California

    Google Scholar 

  194. Parish T, Liu J, Nikaido H, Stoker NG (1997) A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol 179: 7827–7833

    PubMed  CAS  Google Scholar 

  195. Martin PK, Li T, Sun D, Biek DP, Schmid MB (1999) Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 181: 3666–3673

    CAS  Google Scholar 

  196. Hulten K, Gibreel A, Skold 0, Engstrand L (1997) Macrolide resistance in Helicobacter pylori: mechanism and stability in strains from clarithromycin-treated patients. Antimicrob Agents Chemother 41: 2550–2553

    PubMed  CAS  Google Scholar 

  197. Ross JI, Eady EA, Cove JH, Jones CE, Ratyal AH, Miller YW, Vyakrnam S, Cunliffe WJ (1997) Clinical resistance to erythromycin and clindamycin in cutaneous propionibacteria isolated from acne patients is associated with mutations in 23S rRNA. Antimicrob Agents Chemother 41: 1162–1165

    PubMed  CAS  Google Scholar 

  198. Karlsson M, Fellstrom C, Heldtander MU, Johansson KE, Franklin A (1999) Genetic basis of macrolide and lincosamide resistance in Brachyspira (Serpulina) hyodysenteriae. FEMS Microbiol Lett 172: 255–260

    Article  CAS  Google Scholar 

  199. Vester B, Garrett RA (1987) A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie 69: 891–900

    Article  PubMed  CAS  Google Scholar 

  200. Wang G, Taylor DE (1998) Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob Agents Chemother 42: 1952–1958

    PubMed  CAS  Google Scholar 

  201. Wang G, Jiang Q, Taylor DE (1998) Genotypic characterization of clarithromycin-resistant and -susceptible Helicobacter pylori strains from the same patient demonstrates existence of two unrelated isolates. J Clin Microbiol 36: 2730–2731

    PubMed  CAS  Google Scholar 

  202. Stone GG, Shortridge D, Versalovic J, Beyer J, Flamm RK, Graham DY, Ghoneim AT, Tanaka SK (1997) A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. Antimicrob Agents Chemother 41: 712–714

    CAS  Google Scholar 

  203. Occhialini A, Urdaci M, Doucet-Populaire F, Bebear CM, Lamouliatte H, Megraud F (1997) Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob Agents Chemother 41: 2724–2728

    PubMed  CAS  Google Scholar 

  204. van Doom LJ, Debets-Ossenkopp YJ, Marais A, Sanna R, Megraud F, Kusters JG, Quint WG (1999) Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance. Antimicrob Agents Chemother 43: 1779–1782

    Google Scholar 

  205. Debets-Ossenkopp YJ, Brinkman AB, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG (1998) Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates of Helicobacter pylori. Antimicrob Agents Chemother 42: 2749–2751

    PubMed  CAS  Google Scholar 

  206. Debets-Ossenkopp YJ, Sparrius M, Kusters JG, Kolkman JJ, Vandenbroucke-Grauls CM (1996) Mechanism of clarithromycin resistance in clinical isolates of Helicobacter pylori. FEMS Microbiol Lett 142: 37–42

    Article  CAS  Google Scholar 

  207. Taylor DE, Ge Z, Purych D, Lo T, Hiratsuka K (1997) Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob Agents Chemother 41: 2621–2628

    PubMed  CAS  Google Scholar 

  208. Versalovic J, Osato MS, Spakovsky K, Dore MP, Reddy R, Stone GG, Shortridge D, Flamm RK, Tanaka SK, Graham DY (1997) Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. J Antimicrob Chemother 40: 283–286

    Article  PubMed  CAS  Google Scholar 

  209. Wallace RJ, Jr., Meier A, Brown BA, Zhang Y, Sander P, Onyi GO, Bottger EC (1996) Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 40: 1676–1681

    CAS  Google Scholar 

  210. Nash KA, Inderlied CB (1995) Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob Agents Chemother 39: 2625–2630

    Article  PubMed  CAS  Google Scholar 

  211. Meier A, Kirschner P, Springer B, Steingrube VA, Brown BA, Wallace RJ, Jr., Bottger EC (1994) Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother 38: 381–384

    Article  CAS  Google Scholar 

  212. Burman WJ, Stone BL, Brown BA, Wallace J, R.J., Bottger EC (1998) AIDS-related Mycobacterium kansasii infection with initial resistance to clarithromycin. Diagn Microbiol Infect Dis 31: 369–371

    CAS  Google Scholar 

  213. Lucier TS, Heitzman K, Liu SK, Hu PC (1995) Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob Agents Chemother 39: 2770–2773

    Article  CAS  Google Scholar 

  214. Stamm LV, Bergen HL (2000) A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother 44: 806–807

    Article  PubMed  CAS  Google Scholar 

  215. van Doom LJ, Debets-Ossenkopp YJ, Marais A, Megraud F, Kusters JG, Quint WGV (1999) Rapid detection of mutations in the 23S rRNA gene associated with macrolide resistance in Helicobacter pylori by PCA and reverse hybridization. In 39th Annual International Conference on Antimicrobial Agents and Chemotherapy p. 263, American Society for Microbiology, Washington, DC, San Francisco, California

    Google Scholar 

  216. Vannuffel P, Di Giambattista M, Morgan EA, Cocito C (1992) Identification of a single base change in ribosomal RNA leading to erythromycin resistance. J Biol Chem 267: 8377–8382

    PubMed  CAS  Google Scholar 

  217. Roberts AN, Hudson GS, Brenner S (1985) An erythromycin-resistance gene from an erythromycin-producing strain of Arthrobacter sp. Gene 35: 259–270

    Article  PubMed  CAS  Google Scholar 

  218. Uchiyama H, Weisblum B (1985) N-Methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene 38: 103–110

    Article  PubMed  CAS  Google Scholar 

  219. Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38: 215–226

    CAS  Google Scholar 

  220. Epp JK, Burgett SG, Schoner BE (1987) Cloning and nucleotide sequence of a carbomycinresistance gene from Streptomyces thermotolerans. Gene 53: 73–83

    CAS  Google Scholar 

  221. Pernodet JL, Blondelet-Rouault MH, Guerineau M (1993) Resistance to spiramycin in Streptomyces ambofaciens the producer organism, involves at least two different mechanisms. J Gen Microbiol 139: 1003–1011

    Article  PubMed  CAS  Google Scholar 

  222. Gandecha AR, Cundliffe E (1996) Molecular analysis of tlrD an MLS resistance determinant from the tylosin producer, Streptomyces fradiae. Gene 180: 173–176

    CAS  Google Scholar 

  223. Peschke U, Schmidt H, Zhang HZ, Piepersberg W (1995) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol 16: 1137–1156

    Article  PubMed  CAS  Google Scholar 

  224. Inouye M, Morohoshi T, Horinouchi S, Beppu T (1994) Cloning and sequences of two macrolideresistance-encoding genes from mycinamicin-producing Micromonospora griseorubida. Gene 141: 39–46

    CAS  Google Scholar 

  225. Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci USA 95: 12111–12116

    Article  PubMed  CAS  Google Scholar 

  226. Fujisawa Y, Weisblum B (1981) A family of r-determinants in Streptomyces spp. that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 146: 621–631

    PubMed  CAS  Google Scholar 

  227. Calcutt MJ, Cundliffe E (1990) Cloning of a lincosamide resistance determinant frm Streptomyces caelestis the producer of celesticetin, and characterization of the resistance mechanism. J Bacteriol 172: 4710–4714

    PubMed  CAS  Google Scholar 

  228. Jenkins G, Zalacain M, Cundliffe E (1989) Inducible ribosomal RNA methylation in Streptomyces lividans conferring resistance to lincomycin. J Gen Microbiol 135: 3281–3288

    PubMed  CAS  Google Scholar 

  229. Murphy E, Huwyler L, de Freire Bastos MdC (1985) Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J 4: 3357–3365

    PubMed  CAS  Google Scholar 

  230. Shaw JH, Clewell DB (1985) Complete nucleotide sequence of macrolide-lincosamide-strepto-gramin B-resistance transposon Tn91 7 in Streptococcus faecalis. J Bacteriol 164: 782–796

    CAS  Google Scholar 

  231. Horinouchi S, Weisblum B (1982) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 150: 804–814

    PubMed  CAS  Google Scholar 

  232. Rasmussen JL, Odelson DA, Macrina FL (1986) Complete nucleotide sequence and transcription of ermF a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol 168: 523–533

    CAS  Google Scholar 

  233. Berryman DI, Lyristis M, Rood JI (1994) Cloning and sequence analysis of ermQ the predominant macrolide-lincosamide-streptogramin B resistance gene in Clostridium perfringens. Antimicrob Agents Chemother 38: 1041–1046

    Article  CAS  Google Scholar 

  234. Serwold-Davis TM, Groman NB (1988) Identification of a methylase gene for erythromycin resistance within the sequence of a spontaneously deleting fragment of Corynebacterium diphtheriae plasmid pNG2. FEMS Microbiol Lett 46: 7–14

    Article  Google Scholar 

  235. McGee L, Klugmann KP, Wasas A, Capper T, Brink A (2001) Serotype 19f multiresistant pneumococcal clone harboring two erythromycin resistance determinants (erm(B) and enn(A)) in South Africa. Antimicrob Agents Chemother 45: 1595–1598

    Article  PubMed  CAS  Google Scholar 

  236. Perreten V, Schwarz FV, Teuber M, Levy SB (2001) Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. Antimicrob Agents Chemother 45: 1109–1114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Sutcliffe, J.A., Leclercq, R. (2002). Mechanisms of resistance to macrolides, lincosamides, and ketolides. In: Schönfeld, W., Kirst, H.A. (eds) Macrolide Antibiotics. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8105-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8105-0_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9438-8

  • Online ISBN: 978-3-0348-8105-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics