Skip to main content

Random Planar Lattices and Integrated SuperBrownian Excursion

  • Conference paper
Mathematics and Computer Science II

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this extended abstract, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius rn of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r = R - L of the support of the one-dimensional ISE, or precisely:

$$ n^{ - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} r_n \xrightarrow{{law}} (8/9)^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} r. $$

More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Aldous. Tree-based models for random distribution of mass. J. Statist. Phys., 73(3-4):625-641,1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Ambjørn, B. Durhuus and T. Jónsson. Quantum gravity, a statistical field theory approach. Cambridge Monographs on Mathematical Physics, 1997.

    Google Scholar 

  3. J. Ambjørn and Y. Watabiki, Scaling in Quantum Gravity. Nucl. Phys. B, 445:129-144,1995.

    Article  Google Scholar 

  4. D. Arquès. Les hypercartes planaires sont des arbres très bien étiquetés. Discrete Math., 58:11-24, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Banderier, P. Flajolet, G. Schaeffer and M. Soria. Random Maps, Coalescing Saddles, Singularity Analysis, and Airy Phenomena. Random Struct. & Algorithms, 19:194-246, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. A. Bender, K. J. Compton and L. B. Richmond. 0-1 laws for maps. Random Struct. & Algorithms, 14:215-237, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Brezin, C. Itzykson, G. Parisi and J.-B. Zuber. Planar Diagrams. Comm. Math. Phys., 59:35-47, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Borgs, J. Chayes, R. van der Hofstad and G. Slade. Mean-field lattice trees. On combinatorics and statistical mechanics. Ann. Comb., 3(2-4):205-221, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Cori and B. Vauquelin. Planar maps are well labeled trees Canad. J. Math.,33(5):1023-1042, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dembo and O. Zeitouni. Large deviations for random distribution of mass. Random discrete structures (Minneapolis, MN, 1993),45-53, IMA Vol. Math. Appl., 76, Springer, New York, 1996.

    Google Scholar 

  11. E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys., 193(1):69-104,1998.

    Article  MathSciNet  Google Scholar 

  12. Z. Gao and N. C. Wormald. The Distribution of the Maximum Vertex Degree in Random Planar Maps. J. Combinat. Theory, Ser. A, 89:201-230,2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Gross, T. Piran and S. Weinberg. Two dimensional quantum gravity and random surfaces. World Scientific, 1992.

    Google Scholar 

  14. T. Hara and G. Slade. The incipient infinite cluster in high-dimensional percolations. Electron. Res. Announc. Amer. Math. Soc., 4:48-55, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Jacquard. Cartes et Arbres : énumération, génération et dessins. PhD thesis, École Poly technique , 1997, Palaiseau.

    Google Scholar 

  16. S. Jain and S. D. Mathur. World sheet geometry and baby universes in 2-d quantum gravity. Phys. Lett. B, 305:208-213, 1993.

    Article  MathSciNet  Google Scholar 

  17. W. D. Kaigh. An invariance principle for random walk conditioned by a late return to zero. Ann. Prob., 4(1):115-121, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1999.

    Book  Google Scholar 

  19. M. Marcus and G. Schaeffer. Une bijection simple pour les cartes orientables. Manuscript, 10pp, july 2001.

    Google Scholar 

  20. M. Marcus and B. Vauquelin. Un codage des cartes de genre quelconque. In B. Leclerc and J.Y. Thibon, ed., Séries formelles et combinatoire algébrique, 7ème colloque, 399-416. Université de Marne-la-Vallée, 1995.

    Google Scholar 

  21. J.-F. Marckert and A. Mokkadem. States spaces of the snake and of its tour - Convergence of the discrete snake. Manuscript, 2002.

    Google Scholar 

  22. J. Pitman. Enumerations of Trees and Forests related to Branching Processes and Random Walks. Tech. Report 482, Dept. Statistics, University of California at Berkeley.

    Google Scholar 

  23. L. B. Richmond and N. C. Wormald. Almost all maps are asymmetric. J. of Gombinat. Theory, Ser. B, 63(1):1- 7, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires. PhD. thesis, Université Bordeaux I, 1998, Bordeaux.

    Google Scholar 

  25. L. Serlet. A large deviation principle for the Brownian snake, Stochastic Process. Appl., 67(1):101-115, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Stanley. Enumerative Combinatorics, volume II, Cambridge Series in Advanced Mathematics, 1999.

    Google Scholar 

  27. W.T. Thtte. A census of planar maps. Canad. J. Math., 15:249- 271, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Watabiki. Construction of noncritical string field theory by transfert matrix formalism in dynamical triangulations. Nucl. Phys. B, 441:119- 166, 1995.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Chassaing, P., Schaeffer, G. (2002). Random Planar Lattices and Integrated SuperBrownian Excursion. In: Chauvin, B., Flajolet, P., Gardy, D., Mokkadem, A. (eds) Mathematics and Computer Science II. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8211-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8211-8_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9475-3

  • Online ISBN: 978-3-0348-8211-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics