Skip to main content

Efficient Solution of Dynamic Optimization and NMPC Problems

  • Conference paper
Nonlinear Model Predictive Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 26))

Abstract

Large scale optimization strategies have evolved considerably over the past two decades. Currently, continuous variable optimization problems (nonlinear programs) are solved on-line for steady state refinery models with several hundred thousand variables. Moreover, efficient NLP strategies have been developed for dynamic optimization problems. Still, to take the next step, on-line optimization of large dynamic chemical processes, a number of limitations and research challenges must be overcome.

Many of the advances in NLP algorithms have taken place by recognizing and exploiting the framework of Successive Quadratic Programming (SQP) algorithms. These are extensions of Newton type methods for converging to the solution of the KKT (optimality) conditions of the optimization problem. Because of this, fast convergence can be expected and a number of standard devices can be added to stabilize the algorithm to converge from poor starting points. Limitations of these Newton-based methods are also well-known. They experience difficulties in the presence of ill conditioning and extreme nonlinearities. Also, for optimization algorithms, nonconvexity can also lead to a number of difficulties and there is a need for software that allows exploitable structures for specific problem classes.

A number of innovations in algorithm design and problem formulation address these issues and greatly improve performance. As a result, very fast NLP algorithms can be derived for data reconciliation, parameter estimation, nonlinear model predictive control and dynamic optimization. Moreover, inequality constraints and variable bounds can be treated through advances in interior point strategies. These methods preserve the particular problem structure and scale well in performance for large-scale problems with many constraints.

Finally, the ability to solve nonlinear programs quickly also allows us to consider more challenging problems. These include the extension to solving nonconvex NLPs globally and the ability to assess the solution’s tolerance to uncertainty by considering features of nonlinear programming sensitivity analysis and robust optimization through flexibility analysis and design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albuquerque, A. and L. T. Biegler, “Decomposition algorithms for on-line estimation with nonlinear models,” Comp. Chem. Engr 19, p. 1031 (1995)

    Google Scholar 

  2. Albuquerque, A. and L. T. Biegler, Decomposition algorithms for on-line estimation with nonlinear DAE models, Comp. Chem. Engr 21, p. 283 (1997)

    Google Scholar 

  3. [3] Albuquerque, J V. Gopal, G. Staus, L. T. Biegler, and B. E. Ydstie, “Interior Point SQP Strategies For Structured Process Optimization Problems” Process Syste ms Engineering ‘87

    Google Scholar 

  4. Ascher, U. M R.M.M. Mattheij and R.D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall Englewood Cliffs,NJ. (1988)

    Google Scholar 

  5. Badgwell, T “Robust model predictive control for nonlinear plants,” presented at Annual AIChE meeting, Chicago, IL (1996)

    Google Scholar 

  6. Beard, R. W G. N. Saridis, and J. T. Wen, “Galerkin Approximations of the Generalized Hamilton-Jacobi-Bellman Equation,” Automatica, 33, 12, P. 2159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biegler, L. T J. Nocedal and C. Schmid, A Reduced Hessian Method for Large-Scale Constrained Optimization, SIAM J. Optimization, 5, p. 314 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Biegler, L. T Advances in Nonlinear Programming Concepts for Process Control,“ J. Proc. Control, to appear (1998)

    Google Scholar 

  9. Bock, H. G “Recent advances in parameter identification techniques,” in P. Deuflhard and E. Hairer (eds.), Numerical Treatment of Inverse Problems, Birkhäuser, Heidelberg (1983)

    Google Scholar 

  10. deBoor, C. W and R. Weiss, “SOLVEBLOK: A package for solving ABD linear ssytems,” ACM TOMS, 6,p. 80 (1980)

    Article  MATH  Google Scholar 

  11. S. Boyd, C. Crusius, and A. Hansson, Control Applications of Nonlinear Convex Programming. J. Process Control, to appear, 1997

    Google Scholar 

  12. Byrd, R J-C. Gilbert and J. Nocedal, “A trust region method based on interior point methods for nonlinear programming,” Technical Report OTC 96/02, Northwestern University (1996)

    Google Scholar 

  13. Byrd, R M. E. Hribar and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming,” Technical Report OTC 97/05, Northwestern University (1997)

    Google Scholar 

  14. Cervantes, A. and L. T. Biegler, “Large-Scale DAE Optimization Using a Simultaneous NLP Formulation,” AIChE J., to appear (1998)

    Google Scholar 

  15. Dennis, J. and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, Philadelphia (1996)42 L. T. Biegler

    MATH  Google Scholar 

  16. Downs, J.J. and E.F. Vogel, A Plant-Wide Industrial Process Control Problem, Computers Chem. Eng Vol 17(3), p. 245–255 (1993)

    Google Scholar 

  17. Dunn, J. C. and D. Bertsekas, “Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems,” J. Opt. Theo. Appl., 62, p. 23 (1989)

    Article  MathSciNet  Google Scholar 

  18. Epperly, T. G. W and E. N. Pistikopoulos, “A reduced space branch and bound algorithm for global optimization,” J. Global Optimization, 11, p. 287 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher, R Practical Methods for Optimization, Wiley, Chichester (1987)

    Google Scholar 

  20. Floudas, C. A “Deterministic Global Optimization in Design, Control, and Computational Chemistry,” in Large Scale Optimization with Applications, Volume 93: Part II: Optimal Design and Control, IMA Volumes in Mathematics and Applications, Springer Verlag, New York (1997)

    Google Scholar 

  21. Copal, V PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1997.

    Google Scholar 

  22. Grossmann, I. E. (ed.) Global Optimization in Engineering Design,Kluwer, Netherlands (1996)

    MATH  Google Scholar 

  23. S-P. Han. “A globally convergent method for nonlinear programming.” JOTA, 22(3):297–310, 1977.

    Article  MATH  Google Scholar 

  24. deHoog, R and R. M. Mattheij, “On the conditioning of multipoint and integral boundary value problems,” SIAM J. Math. Anal., 20, 1, p. 200 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horst, R. and H. Tuy, Global Optimization Springer Verlag, Berlin (1996)

    Google Scholar 

  26. Kassmann, D. E and T. A. Badgwell, “Interior Point Methods in Robust Model Predictive Control,” presented at Annual AIChE Meeting, Los Angeles, CA (1997)

    Google Scholar 

  27. Keerthi, S.S E.G. Gilbert, “Optimal Infinite-Horizon Feedback Laws for General Class of Constrained Discrete-Time Systems: Stability and Moving-Horizon Approximations”, IEEE Trans. Auto. Cont., 57(2), 265–293 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Kleinman, D. L “An Easy Way to Stabilize a Linear Constant System,” IEEE Trans. Aut. Cont AC-15, p. 692 (1970)

    Google Scholar 

  29. Kothare, M V. Balakrishnan and M. Morari, “Robust Constrained Model Predictive Control using Linear Matrix Inequalities,” Automatica, 32, 10, p. 1361 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kwon, W. H. and A. E. Pearson, “On Feadback Stabilization of Time Varying Discrete Linear Systems,” IEEE Trans. Aut. Cont AC-23, p. 838 (1977)

    Google Scholar 

  31. Lalee, M J. Nocedal and T. Platenga, “On the implementation of an algorithm for large-scale equality constrained optimization,” SIAM J. Opt., to appear (1998)

    Google Scholar 

  32. Li, W-C. and L. T. Biegler, “Multistep, Newton-type Control Strategies for Constrained Nonlinear Processes,” Chemical Engineering Research and Design,67, p. 562 (1989)

    Google Scholar 

  33. Ljung, L (1987), System Identification, Theory for the User, Prentice Hall, Inc Englewood Cliffs, New Jersey.

    Google Scholar 

  34. Mayne, D. Q, “Nonlinear model predictive conrol: an assessment,” Proceedings of CPC-V, (1996)

    Google Scholar 

  35. Michalska, H D.Q. Mayne (1993). “Robust Receding Horizon Control of Constrained Nonlinear Systems”, IEEE Trans. Auto. Cont., 38(11), 1623–1633.

    Article  MathSciNet  MATH  Google Scholar 

  36. McCormick, G.P “Computability of Global Solutions to Factorable Nonconvex Programs: Part I: Convex underestimator problems”, Math. Prog.,Vol. 10, p.147 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mehrotra, S Quadratic convergence in a primal dual method, Math. Oper. Res 15, p. 741 (1993)

    Article  MathSciNet  Google Scholar 

  38. Mohideen, M. J PhD Thesis, Imperial College, London (1996)

    Google Scholar 

  39. Oliveira, N.M.C L.T. Siegler “Newton-type Algorithms for Nonlinear Process Control. Algorithm and Stability Results”, Automatica,31, 2, p. 281 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pistikopoulos, E “Uncertainty in Process Design and Operations,” Comp. Chem. Engr., 19, p. S553 (1995)

    Article  Google Scholar 

  41. Rao, C J. B. Rawlings and S. Wright, “Application of Interior Point Methods to Model Predictive Control,” J. Opt. Theo. Applies., to appear (1998)

    Google Scholar 

  42. Rawlings, J.B K.R. Muske (1993). “The Stability of Constrained Receding Horizon Control”, IEEE Trans. Auto. Cont., 38(10), 1512–1516.

    Article  MathSciNet  MATH  Google Scholar 

  43. Santos, L.O N. Oliveira and L.T. Siegler, “Reliable and Efficient Optimization Strategies for Nonlinear Model Predictive Control,” Proc. Fourth IFAC Symposium on Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes (DYCORD ‘85), p. 33 (1995).

    Google Scholar 

  44. L. O. Santos and L. T. Siegler, “A Tool to Analyze Robust Stability for Model Predictive Controllers,” J. Process Control, to appear (1998)

    Google Scholar 

  45. Scockaert, P. and J. B. Rawlings, “Optimization formulations for model predictive control,” Proceedings of IMA Workshop on Large Scale Optimization (1997)

    Google Scholar 

  46. Scockaert, P D. Q. Mayne and J. B. Rawlings, “Suboptimal model predictive control,” submitted for publication (1997)

    Google Scholar 

  47. Smith, E. M. B and C. Pantelides, “Global Optimisation of Nonconvex MINLPs,” Comp. Chem. Engr., 21, p. S791—S796 (1997)

    Google Scholar 

  48. Staus, G. H L. T. Siegler and B. E. Ydstie, “Global Optimization for Identification,” submitted for publication (1998)

    Google Scholar 

  49. Steihaug, T “The conjugate gradient method and trust regions in large scale optimization,” SIAM J. Num. Anal., 20, p. 626 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tanartkit, P L.T. Siegler, “Stable Decomposition for Dynamic Optimization”, I& EC Research, 34, p. 1253 (1995)

    Article  Google Scholar 

  51. Ternet, D PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1997.

    Google Scholar 

  52. Wright, S “Applying New Optimization Algorithms to Model Predictive Control,” Proceedings of CPC-V, (1996)

    Google Scholar 

  53. Wright, S Primal-Dual Interior Point Methods, SIAM, Philadelphia (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Biegler, L.T. (2000). Efficient Solution of Dynamic Optimization and NMPC Problems. In: Allgöwer, F., Zheng, A. (eds) Nonlinear Model Predictive Control. Progress in Systems and Control Theory, vol 26. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8407-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8407-5_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9554-5

  • Online ISBN: 978-3-0348-8407-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics