Skip to main content

Cellular signaling to NF-кB: Role in inflammation and therapeutic promise

  • Conference paper
Inflammatory Processes:

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Recent advances in our understanding of the mediators involved in acute and chronic inflammatory diseases have led to new strategies in the search for effective therapeutics. Traditional approaches include direct target intervention such as the use of specific antibodies, receptor antagonists, or enzyme inhibitors. Breakthroughs in the knowledge of regulatory mechanisms involved in the transcription and translation of inflammatory mediators has led to increased interest in therapeutic approaches directed at the level of gene transcription. Of the transcription factors targeted for pharmacological intervention, NF-кB has drawn much interest in light of its role as a coordinating regulator in the expression of a variety of rapid-response genes involved in inflammatory and immune reactions. The activation of NF-кB, its migration to the nucleus, and its binding to DNA provide numerous potential points of intervention, some of which are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeuerle P, Henkel T (1994) Function and activation of NF-kB in the immune system. Ann Rev of Immunol 12: 141–179

    Article  CAS  Google Scholar 

  2. Kopp EB, Ghosh S (1995) NF-kB and Rel proteins in innate immunity. Adv Immunol 58: 1–27

    Article  PubMed  CAS  Google Scholar 

  3. Sen P, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705–716

    Article  PubMed  CAS  Google Scholar 

  4. Baeuerle P, Baltimore D (1988) Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kB transcription factor. Cell 53: 211–217

    Article  PubMed  CAS  Google Scholar 

  5. Baeuerle P, Baltimore D (1988) IKB: a specific inhibitor of the NF-kB transcription factor. Science 242: 540–546

    Article  PubMed  CAS  Google Scholar 

  6. Mukaida N, MaheY, Matsushima K (1990) Cooperative interaction of nuclear factor-kB- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 265: 21128–21133

    PubMed  CAS  Google Scholar 

  7. Liberman TA, Baltimore D (1990) Activation of interleukin-6 gene expression through NF-kB transcription factor. Mol Cell Biol 10: 2327–2334

    Google Scholar 

  8. Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S (1993) Transcription factors NF-IL6 and NF-kB synergistically activate transcription of the inflammatory cytokines interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 90: 10193–10197

    Article  PubMed  CAS  Google Scholar 

  9. Marui N, Offerman MK, Swerlick, R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 92: 1866–1874

    Article  PubMed  CAS  Google Scholar 

  10. Kawai M, Nishikomori R, Jung E-Y, Tai G, Yamanak C, Mayumi M, Heike T (1995) Pyrrolidine dithiocarbamate inhibits intercellular adhesion molecule-1 biosynthesis induced by cytokines in human fibroblasts. J Immunol 154: 2333–2341

    PubMed  CAS  Google Scholar 

  11. Ledebur HC, Parks TP (1995) Transcriptional regulation of the intracellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. J Biol Chem 270: 933–943

    Article  PubMed  CAS  Google Scholar 

  12. Xie Q, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kB/Rel in induction of nitric oxide synthase. J Biol Chem 269: 4705–4708

    PubMed  CAS  Google Scholar 

  13. Adcock IM, Brown CR, Kwon O, Barnes PJ (1994) Oxidative stress induces NF-kB DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun 199: 1518–1524

    Article  PubMed  CAS  Google Scholar 

  14. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie Q, Nathan CF, Wahl SM (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749–754

    Article  PubMed  CAS  Google Scholar 

  15. Kleemann R, Rothe H, Kolb-Bachofen V, Xie Q, Nathan C, Martin S, Kolb H (1993) Transcription and translation of inducible nitric oxide synthase in the pancreas of pre-diabetic BB rats. FEBS Lett 328: 9–12

    Article  PubMed  CAS  Google Scholar 

  16. Wilson SJ, Wallin A, Sandstrom T, Howarth PH, Holgate ST (1998) The expression of NF-kappa-B and associated adhesion molecules in mild asthmatics and normal controls. J Allergy Clin Immunol 101: 616

    Article  Google Scholar 

  17. Blackwell TS, Holden EP, Blackwell TR, DeLarco JE, Christman JW (1994). Cytokine-induced neutrophil chemoattractant mediates neutrophillic alveolitis in rats: association with nuclear factor kB activation. Amer J Resp Cell Mol Biol 11: 464–472

    CAS  Google Scholar 

  18. Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW (1996) In vivo antioxidant treatment suppresses nuclear factor-kB activation and neutrophilic lung inflammation. J Immunol 157: 1630–1637

    PubMed  CAS  Google Scholar 

  19. Haddad E-B, Salmon M, Koto H, Barnes PJ, Adcock I, Chung KF (1996) Ozone induction of cytokine-induced neutrophil chemoattractant (CINC) and nuclear factor-icB in rat lung: inhibition by corticosteroids. FEBS Lett 379: 265–268

    Article  PubMed  CAS  Google Scholar 

  20. Lentsch AB, Czermak BJ, Bless NM, Ward PA (1998) NF-kB activation during IgG immune complex-induced lung injury; requirements for TNF-a and IL-1(3 but not complement. Am J Pathol 152: 1327–1336

    PubMed  CAS  Google Scholar 

  21. Barnes PJ (1989) A new approach to the treatment of asthma. New Eng J Med 321: 1517–1527

    Article  PubMed  CAS  Google Scholar 

  22. Ardite E, Panes J, Miranda M, Salas A, Elizalde JI, Sans M, Arce Y, Bordas JM, Fernandez-Checa JC, Pique JM (1998) Effects of steroid treatment on activation of nuclear factor kB in patients with inflammatory bowel disease. Br J Pharmacol 124: 431–433

    Article  PubMed  CAS  Google Scholar 

  23. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Scholmerich J, Gross V (1998) Nuclear factor kB is activated in macrophage and epithelial cells of inflamed intestinal mucosa. Gastroenterol 115: 357–369

    Article  CAS  Google Scholar 

  24. Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor kB in inflammatory bowel disease. Gut 42: 477–484

    Article  PubMed  CAS  Google Scholar 

  25. Neurath MF, Pettersson S, Meyer zum Buschenfelde K-H, Strober W (1996) Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kB abrogates established experimental colitis in mice. Nature Med 2: 998–1004

    Article  PubMed  CAS  Google Scholar 

  26. Neurath MF, Pettersson S (1997) Predominant role of NF-kB p65 in the pathogenesis of chronic intestinal inflammation. Immunobiol 198: 91–98

    Article  CAS  Google Scholar 

  27. Wahl C, Liptay S, Adler G, Schmid RM (1998) Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest 101: 1163–1174

    Article  PubMed  CAS  Google Scholar 

  28. Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor-KB in rheumatoid synovium; localization of p50 and p65. Arthritis Rheum 38: 1762–1770

    Article  PubMed  CAS  Google Scholar 

  29. Marok R, Winyard PG, Coumbe A, Kus ML, Gaffney K, Blades S, Mapp PI, Morris CJ, Blake DR, Kaltschmidt C, Baeuerle PA (1996) Activation of the transcription factor nuclear factor-KB in human inflamed synovial tissue. Arthritis Rheum 39: 583–591

    Article  PubMed  CAS  Google Scholar 

  30. Sioud M, Mellbye O, Forre O (1998) Analysis of the NF-kB p65 subunit, Fas antigen, Fas ligand and Bcl-2-related proteins in the synovium of RA and polyarticular JRA. Clin Exp Rheumatol 16: 125–134

    PubMed  CAS  Google Scholar 

  31. Tsao PW, Suzuki T, Totsuka R, Murata T, Takagi T, Ohmachi Y, Fujimura H, Takata I (1997) The effect of dexamethasone on the expression of activated NF-kB in adjuvant arthritis. Clin Immunol Immunopathol 83: 173–178

    Article  PubMed  CAS  Google Scholar 

  32. Roshak AK, Jackson JR, McGough K, Chabot-Fletcher M, Mochan E, Marshall L (1996) Manipulation of distinct NFkB proteins alters interleukin-1β-induced human rheumatoid synovial fibroblast prostaglandin E2 formation. J Biol Chem 271: 31496–31501

    Article  PubMed  CAS  Google Scholar 

  33. Miyazawa K, Mori A, Yamamoto K, Okudaira H (1998) Constitutive transcription of the human interleukin-6 gene by rheumatoid synoviocytes; spontaneous activation of NF-kB and CBF1. Am J Pathol 152: 793–803

    PubMed  CAS  Google Scholar 

  34. Fujisawa K, Aono H, Hasunuma T, Yamamoto K, Mita S, Nishiola K (1996) Activation of transcription factor NF-kB in human synovial cells in response to tumor necrosis factor a. Arthritis Rheum 39: 197–203

    Article  PubMed  CAS  Google Scholar 

  35. Roshak AK, Jackson JR, Chabot-Fletcher M, Marshall L (1997) Inhibition of NF-kBmediated interleukin-1β-stimulated prostaglandin E2 formation by the marine natural product hymenialdisine. J Pharmacol Exp Therapeut 283: 955–961

    CAS  Google Scholar 

  36. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kB and the glucocorticoid receptor. Proc Natl Acad Sci USA 91: 752–756

    Article  PubMed  CAS  Google Scholar 

  37. Mukaida N, Morita M, IshikawaY, Rice N, Okamoto S, Kasahara T, Matsushima K (1994) Novel mechanism of glucocorticoid-mediated gene repression. J Biol Chem 269: 13289–13295

    PubMed  CAS  Google Scholar 

  38. Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson J-A, Van der Saag PT (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9: 401–412

    Article  PubMed  CAS  Google Scholar 

  39. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS Jr (1995) Characterization of mechanisms involved in transrepression of NF-kB by activated glucocorticoid receptors. Mol Cell Biol 15: 943–953

    PubMed  CAS  Google Scholar 

  40. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS (1995) Role of transcriptional activation of IkBα in mediation of immunosuppression by glucocorticoids. Science 270: 283–286

    Article  PubMed  CAS  Google Scholar 

  41. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-kB activity through induction of IkB synthesis. Science 270: 286–290

    Article  PubMed  CAS  Google Scholar 

  42. Tartaglia LA, Goeddel DV (1992) Two TNF receptors. Immunol Today 13: 151–153

    Article  PubMed  CAS  Google Scholar 

  43. Vandenabeele P, Declercq W, Beyaert R, Tiers W (1995) Trends Cell Biol 5: 392–399

    Article  PubMed  CAS  Google Scholar 

  44. Hsu H, Shu H-B, Pan M-P Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor-1 signal transduction pathways. Cell 84: 299–308

    Article  PubMed  CAS  Google Scholar 

  45. Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, Krammer PH, Peter ME, Dixit VM (1996) FADD/MORT is a common mediator of CD95 (Fas/APO-1)- and TNF-receptor-induced apoptosis. J Biol Chem 271: 4961–4965

    Article  PubMed  CAS  Google Scholar 

  46. Hsu H, Huang J, Shu H-B, Baichwal V, Goeddel DV (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387–396

    Article  PubMed  CAS  Google Scholar 

  47. Kelliher M, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-kB signal. Immunity 8: 297–303

    Article  PubMed  CAS  Google Scholar 

  48. Ting AT, Pimentel-Muinos FX, Seed B (1996) RIP mediates tumor necrosis factor receptor 1 activation of NF-kB but not Fas/APO-1 initiated apoptosis. EMBO J 15: 6189–6196

    PubMed  CAS  Google Scholar 

  49. Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem 272: 7727–7731

    Article  PubMed  CAS  Google Scholar 

  50. Huang J, Gao X, Li S, Cao Z (1997) Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc Natl Acad Sci USA 94: 12829–12832

    Article  PubMed  CAS  Google Scholar 

  51. Volpe F, Clatworthy J, Kaptein A, Maschera, B, Griffin A-M, Ray K (1997) The IL-1 receptor accessory protein is responsible for the recruitment of the interleukin-1 receptor associated kinase to the IL1/IL1 receptor I complex. FEBS Lett 419: 41–44

    Article  PubMed  CAS  Google Scholar 

  52. Martin M, Fleur Bol G, Eriksson A, Resch K, Brigelius-Flohe R (1994) Interleukin-1induced activation of a protein kinase co-precipitating with the type I interleukin-1 receptor in T cells. Eur J Immunol 24: 1566–1571

    Article  PubMed  CAS  Google Scholar 

  53. Coston GE, Cao Z, Goeddel DV (1995) NF-kB activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J Biol Chem 270 16514–16517

    Article  Google Scholar 

  54. Cao Z, Henzel WJ, Gao X (1996) IRAK: A kinase associated with the interleukin-1 receptor. Science 271: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  55. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: An adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837–847

    Article  PubMed  CAS  Google Scholar 

  56. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273: 12203–12209

    Article  PubMed  CAS  Google Scholar 

  57. Hultmark D (1994) Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun 199: 144–146

    Article  PubMed  CAS  Google Scholar 

  58. Hardiman G, Rock FL, Balasubramanian S, Kastelein RA, Bazan JF (1996) Molecular characterization and modular analysis of human MyD88. Oncogene 13: 2467–2475

    PubMed  CAS  Google Scholar 

  59. Kanakaraj P, Schafer PH, Cavender DE, Wu Y, Ngo K, Grealish PF, Wadsworth SA, Peterson PA, Siekierka JJ, Harris CA, Fung-Leung W-P (1998) Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med 187: 2073–2079

    Article  PubMed  CAS  Google Scholar 

  60. Yamin TT, Miller DK (1997) The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J Biol Chem 272: 21540–21547

    Article  PubMed  CAS  Google Scholar 

  61. Song HY, Regnier CH, Kirschning CJ, Goeddel DV, Rothe M (1997) Tumor necrosis factor (TNF)-mediated kinase cascades: Bifurcation of nuclear factor-kB and c-jun N-terminal kinase (JNK/SAPK) pathways at the TNF receptor-associated factor 2. Proc Natl Acad Sci USA 94: 9792–9796

    Article  PubMed  CAS  Google Scholar 

  62. Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 385: 540–544

    Article  PubMed  CAS  Google Scholar 

  63. Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C, Levero M (1997) Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. J Biol Chem 272: 26079–26082

    Article  PubMed  CAS  Google Scholar 

  64. Lin X, Mu Y, Cunningham ET, Marcu, KB, Geleziunas R, Greene WC (1998) Molecular determinants of NF-kB-inducing kinase action. Mol Cell Biol 18: 5899–5907

    PubMed  CAS  Google Scholar 

  65. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IkB kinase. Cell 90: 373–383

    Article  PubMed  CAS  Google Scholar 

  66. Ling L, Cao Z, Goeddel DV (1998) NF-kB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci USA 95: 3792–3797

    Article  PubMed  CAS  Google Scholar 

  67. Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H, Okumura K (1998) Differential regulation of IkB kinase a and b by two upstream kinases, NF-kB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci USA 95: 3537–3542

    Article  PubMed  CAS  Google Scholar 

  68. Lee FS, Peters RT, Dang LC, Maniatis T (1998) MEKK1 activates both IkB kinase α and β. Proc Natl Acad Sci USA 95: 9319–9324

    Article  PubMed  CAS  Google Scholar 

  69. Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U (1995) Control of IkB-α proteolysis by site-specific signal-induced phosphorylation. Science 267: 1485–1488

    Article  PubMed  CAS  Google Scholar 

  70. Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW (1995) Coupling of a signal response domain in IkBα to multiple pathways for NF-kB activation. Mol Cell Biol 15: 2809–2818

    PubMed  CAS  Google Scholar 

  71. Whiteside ST, Ernst MK, LeBail O, Laurent-Winter C, Rice N, Israel A (1995) N- and C-terminal sequences control degradation of MAD3/IkBα in response to inducers of NF-kB activity. Mol Cell Biol 15: 5339–5345

    PubMed  CAS  Google Scholar 

  72. Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IkBα by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853–862

    Article  PubMed  CAS  Google Scholar 

  73. Lee FS, Hagler J, Chen ZJ, Maniatis T (1997) Activation of the IkBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88: 213–222

    Article  PubMed  CAS  Google Scholar 

  74. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkB kinase that activates the transcription factor NF-kB. Nature 388: 548–554

    Article  PubMed  CAS  Google Scholar 

  75. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IxB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IkB phosphorylation and NF-kB activation. Cell 91: 243–252

    Article  PubMed  CAS  Google Scholar 

  76. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: Cytokine-activated IkB kinases essential for NF-kB activation. Science 278: 860–866

    Article  PubMed  CAS  Google Scholar 

  77. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV (1997) IkB kinase-β: NF-kB activation and complex formation with IkB kinase-α and NIK. Science 278: 866–869

    Article  PubMed  CAS  Google Scholar 

  78. Connelly MA, Marcu KB (1995) CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol Biol Res 41: 537–549

    PubMed  CAS  Google Scholar 

  79. Mock BA, Connelly MA, McBride OW, Kozak CA, Marcu KB (1995) CHUK, a conserved helix-loop-helix ubiquitous kinase, maps to human chromosome 10 and mouse chromosome 19. Genomics 27: 348–351

    Article  PubMed  CAS  Google Scholar 

  80. Cohen L, Henzel WJ, Baeuerle PA (1998) IKAP is a scaffold protein of the IkB kinase complex. Nature 395: 292–296

    Article  PubMed  CAS  Google Scholar 

  81. Rothwarf DM, Zandi E, Natoli G, Karin M (1998) IKK-γ is an essential regulatory subunit of the IkB kinase complex. Nature 395: 297–300

    Article  PubMed  CAS  Google Scholar 

  82. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A (1998) Complementation cloning of NEMO, a component of the IkB kinase complex essential for NF-kB activation. Cell 93: 1231–1240

    Article  PubMed  CAS  Google Scholar 

  83. Henkel T, Machleidt T, Alklay I, Kronke M, Ben-Neriah Y, Baeuerle PA (1993) Rapid proteolysis of IkB-α is required for activation of the nuclear transcription factor NF-kB. Nature 365: 182–185

    Article  PubMed  CAS  Google Scholar 

  84. Finco TS, Beg AA, Baldwin SA Jr (1994) Inducible phosphorylation of IkBα is not sufficient for its dissociation from NF-kB and is inhibited by protease inhibitors. Proc Natl Acad Sci USA 91: 11884–11888

    Article  PubMed  CAS  Google Scholar 

  85. Lin Y-C, Brown K, Siebenlist U (1995) Activation of NF-kB requires proteolysis of the inhibitor IkB-α: signal-induced phosphorylation of IkB-α alone does not release active NF-kB. Proc Natl Acad Sci USA 92: 552–556

    Article  PubMed  CAS  Google Scholar 

  86. Alkalay I, Yaron A, Hatsubai A, Jung S, Abraham A, Gerlitz O, Pashut-Lavon I, BenNeriah Y (1995) In vitro stimulation of IkB phosphorylation is not sufficient to activate NF-kB. Mol Cell Biol 15: 1294–1301

    PubMed  CAS  Google Scholar 

  87. DiDonato JA, Mercurio F, Karin M (1995) Phosphorylation of IkBα precedes but is not sufficient for its dissociation from NF-kB. Mol Cell Biol 15: 1302–1311

    PubMed  CAS  Google Scholar 

  88. Traenckner EB-M, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kB and stabilizes a newly phosphorylated form of IkB-α that is still bound to NF-kB. EMBO J 13: 5433–5441

    PubMed  CAS  Google Scholar 

  89. Alkalay I, Yaron A, Hatsubai A, Orian A, Ciechanover A, Ben-Neriah Y (1995) Stimulation-dependent IkBα phosphorylation marks the NF-kB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 92: 10599–10603

    Article  PubMed  CAS  Google Scholar 

  90. Li C-CH, Dai RM, Longo DL (1995) Inactivation of NF-kB inhibitors IkBα: ubiquitindependent proteolysis and its degradation product. Biochem Biophys Res Comm 213: 293–301

    Article  Google Scholar 

  91. Baldi L, Brown K, Franzoso G, Siebenlist U (1996) Critical role for lysines 21 and 22 in signal-induced ubiquitin-mediated proteolysis of IkB-α. J Biol Chem 271: 376–379

    Article  PubMed  CAS  Google Scholar 

  92. Yaron A, Gonen H, Alkalay I, Hatzubai A, Jung S, Beyth S, Mercurio F, Manning AM, Ciechanover A, Ben-Neriah Y (1998) Inhibition of NF-kB cellular function via specific targeting of the IkB-ubiquitin ligase. EMBO J 16: 6486–6494

    Article  Google Scholar 

  93. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kB1 precursor protein and the activation of NF-kB. Cell 78: 773–785

    Article  PubMed  CAS  Google Scholar 

  94. Lin Y-Z, Yao S, Veach RA, Torgerson TR, Hawiger J (1995) Inhibition of nuclear translocation of transcription factor NF-kB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 270: 14255–14258

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Chabot-Fletcher, M. (2000). Cellular signaling to NF-кB: Role in inflammation and therapeutic promise. In: Letts, L.G., Morgan, D.W. (eds) Inflammatory Processes:. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8468-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8468-6_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9580-4

  • Online ISBN: 978-3-0348-8468-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics