Skip to main content

Small Deviation Probabilities of Sums of Independent Random Variables

  • Conference paper
High Dimensional Probability

Part of the book series: Progress in Probability ((PRPR,volume 43))

Abstract

Let ξ12, … be a sequence of independent N(0, l)-distributed random variables (r.v.’s) and let (ø(j))∞j=1 be a summable sequence of positive real numbers. The sum S := ∑∞j=1 ø(j2 jis then well defined and one may ask for the small deviation probability of S, i.e. for the asymptotic behavior of ℙ(S < r) as r → 0. In 1974 G. N. Sytaya [S] gave a complete description of this behavior in terms of the Laplace transform of S. Recently, this result was considerably extended to sums S := ∑∞j=1 ø(j)Z j for a large class of i.i.d. r.v.’s Z j ≥ 0 (cf.[DR], [Lif2]). Yet for concrete sequences (ø(j))∞j=1 those descriptions of the asymptotic behavior are very difficult to handle because they use an implicitly defined function of the radius r > 0. In 1986 V. M. Zolotarev [Z2] announced an explicit description of the behavior of ℙ(∑∞j=1 ø(j2 j < r) in the case that ø can be extended to a decreasing and logarithmically convex function on [l,∞). We show that, unfortunately, this result is not valid without further assumptions about the function ∞ (a natural example will be given where an extra oscillating term appears). Our aim is to state and to prove a correct version of Zolotarev’s result in the more general setting of [Lif2], and we show how our description applies in the most important specific examples. For other results related to small deviation problems see [A], [I], [KLL], [Li], [LL], [MWZ], [NS] and [Z1].

Research supported by the DFG-Graduiertenkolleg “Analytische und Stochastische Strukturen und Systeme”, Universität Jena

Research supported by International Science Foundation (ISF) and Russian Foundation for Basic Research (RFBI) and carried out during the author’s sojourn in Strasbourg and Lille-1 universities

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. P. Albin. Minima of H-valued Gaussian Processes. Ann. Probab., 24:788–824, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. W. Anderson and D. A. Darling. Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes. Ann. Math. Statist., 23:193–212, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, 1987.

    Google Scholar 

  4. R. Davis and S. Resnick. Extremes of moving averages of random variables with finite endpoint. Ann. Probab., 19:312–328, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. M. Goldie and R. L. Smith. Slow variation with remainder: Theory and applications. Quart. J. Math. Oxford, 38:45–71, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. A. Ibragimov. On the probability that a Gaussian vector with values in a Hilbert space hits a sphere of small radius. J. Sov. Math., 20:2164–2174, 1982.

    Article  MATH  Google Scholar 

  7. J. Kuelbs, W. V. Li and W. Linde. The Gaussian measure of shifted balls. Probab. Theory Rel. Fields, 98:143–162, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. V. Li. On the lower tail of Gaussian measures. In Probability in Banach Spaces VIII, ser. Progress in Probability, 30:106–117, 1992.

    Article  Google Scholar 

  9. M. A. Lifshits. Gaussian Random Functions. Kluwer, 1995.

    Google Scholar 

  10. M. A. Lifshits. On the lower tail probability of some random series. Ann. Probab., 25, 1997.

    Google Scholar 

  11. W. V. Li and W. Linde. Small ball problems for non-centered Gaussian measures. Prob. Math. Stat., 14:231–251, 1993.

    MathSciNet  MATH  Google Scholar 

  12. E. Mayer-Wolf and O. Zeitouni. The probability of small Gaussian ellipsoids and associated conditional moments. Ann. Probab., 21:14–24, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Nagaev and A. N. Startsev. Asymptotic properties of the distribution function of an infinite quadratic form of Gaussian random variables. In Limit theorems for stochastic processes and statistical conclusions, Work Collect., Tashkent, p.144–160, 1981.

    Google Scholar 

  14. E. Omey and E. Willekens. II-variation with remainder. J. London Math. Soc. (2), 37:105–118, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. N. Sytaya. On the asymptotic representation of the Gaussian measure in a Hilbert space. In Theory of Stochastic Processes, 2:94–102, 1974.

    Google Scholar 

  16. V. M. Zolotarev. Gaussian measure asymptotic in l p on a set of centered spheres with radii tending to zero. In 12th Europ. Meeting of Statisticians, Varna, p.254, 1979.

    Google Scholar 

  17. V. M. Zolotarev. Asymptotic behavior of Gaussian measures in 12-J-Sov. Math., 24:2330–2334, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Dunker, T., Lifshits, M.A., Linde, W. (1998). Small Deviation Probabilities of Sums of Independent Random Variables. In: Eberlein, E., Hahn, M., Talagrand, M. (eds) High Dimensional Probability. Progress in Probability, vol 43. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8829-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8829-5_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9790-7

  • Online ISBN: 978-3-0348-8829-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics