Skip to main content

Abstract

The usual methods for determining antibiotic activity, either alone or in combination, generally expose a growing bacterial inoculum to a constant or static concentration of one or more drugs for a period of approximately 20 h. Such methods include disk susceptibility tests, determinations of minimal inhibitory and minimal bactericidal concentrations with microtiter or macrotube dilutions and time-kill studies (34). Even the determination of serum bactericidal activity in patients or volunteers receiving a given antibiotic regimen only ascertains the antibiotic activity at a specific time, at a single concentration of drug or drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J.S. Al-asadi, D. Greenwood and F. O’Grady: In vitro model simulating the form of exposure of bacteria to antimicrobial drugs encountered in infection. Antimicrob. Agents Chemother. 16, 77–80 (1979).

    Google Scholar 

  2. J.D. Anderson, K.R. Johnson and M.Y. Aird: Comparison of amoxicillin and ampicillin activities in a continuous culture model of human urinary bladder. Antimicrob. Agents Chemother. 17, 554–557 (1980).

    Google Scholar 

  3. A. Bauernfeind, R. Jungwirth and C. Petermüller: Simultaneous simulation of the serum profiles of two antibiotics and analysis of the combined effect against a culture of Pseudomonas aeruginosa. Chemotherapy 28, 334–340 (1982).

    Article  Google Scholar 

  4. T. Bergan and I.B. Carlse: Effect of antibiotics eliminated by first order kinetics. J. antimicrob. Chemother. 15 (Suppl. A), 147–152 (1985).

    Google Scholar 

  5. J. Blaser, H. Rieder, P. Niederer and R. Lüthy: Biological variability of multiple dose pharmacokinetics of netilmicin in man. Eur. J. clin. Pharmac. 24,399–406(1983).

    Article  Google Scholar 

  6. J. Blaser, B.B. Stone, D.H. Gilbert and S.H. Zinner: The effect of single and multiple doses of azlocillin and netilmicin in a pharmacokinetic model compared to standard in vitro methods. Proceedings of the 14th International Congress of Chemotherapy. In: J. Ishigami (Ed.) Recent Advances in Chemotherapy, Antimicrobial Section: 690–1 (1985).

    Google Scholar 

  7. J. Blaser, B.B. Stone, M.C. Groner and S.H. Zinner: Comparison of in vitro synergism testing with a pharmacokinetic model, checkerboard and killing curve methods. Program and Abstracts of the 25th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract 1001. American Society for Microbiology, Washington 1985.

    Google Scholar 

  8. J. Blaser, B.B. Stone and S.H. Zinner: Efficacy of intermittent versus continuous administration of netilmicin in a two compartment in vitro model. Antimicrob. Agents Chemother. 27, 343–349 (1985).

    Google Scholar 

  9. J. Blaser, B.B. Stone, M.C. Groner and S.H. Zinner: Impact of netilmicin regimens on the acitivity of ceftazidime-netilmicin combinations against Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob. Agents Chemother. 28, 64–68 (1985).

    Google Scholar 

  10. J. Blaser : In vitro model for simultaneous simulation of the serum kinetics of two drugs with different half-lives. J. antimicrob. Chemother. 15(Suppl. A), 125–130(1985).

    Google Scholar 

  11. J. Blaser, B.B. Stone and S.H. Zinner: Two compartment kinetic model with multiple artificial capillary units. J. antimicrob. Chemother. 15 (Suppl. A), 131–137 (1985).

    Google Scholar 

  12. J. Blaser, D. Gilbert and S.H. Zinner: Effect of enoxacin with and without leukocytes against Staphylococcus aureus in a pharmacokinetic model. Rev. infect. Dis. (1987)in press.

    Google Scholar 

  13. J. Blaser, B.B. Stone, M.C. Groner and S.H. Zinner: Effect of the ratio of antibiotic peak concentration to MIC on bactericidal activity and emergence of restistance: a comparative study with enoxacin and netilmicin in a pharmacodynamic model. Antimicrob. Agents Chemother 31, 1054–60 (1987).

    Google Scholar 

  14. J. Blaser, O. Weinmann and R. Lüthy. Bacterial adhesion influences the in vitro assessment of bactericidal activity against Staphylococci. Program and Abstracts of the 27th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington 1987.

    Google Scholar 

  15. M.R.W. Brown: Nutrient depletion and antibiotic susceptibility. J. antimicrob. Chemother. 3, 198–201 (1977).

    Article  Google Scholar 

  16. M.R.W. Brown and R Williams: Influence of substrate limitations and growth phase on sensitivity to antimicrobial agents. J. antimicrob. Chemother. 15 (Suppl. A), 7–14 (1985).

    Google Scholar 

  17. R.W. Bundtzen, A.U. Gerber, D.L. Cohn and W.A. Craig: Postantibiotic suppression of bacterial growth. Rev. infect. Dis. 3, 432–438 (1981).

    Article  Google Scholar 

  18. V.M. Chernykh and A.A. Firsov: Kinetics of antimicrobial effect in dynamic model: Microcalorimetric recording and selection of parameters characterizing kinetic curves. Antibiot. med. Biotechnol. (USSR) 7, 498–503 (1985).

    Google Scholar 

  19. R.M. Cozens, E. Tuomanen, W. Tosch, O. Zak, J. Suter and A. Tomasz: Evaluation of the bactericidal activity of betalactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob. Agents Chemother. 29, 797–802 (1986).

    Google Scholar 

  20. M.N. Dudley, J. Blaser, M.J. Kuepker and S.H. Zinner: Evaluation of the significance of ‘extravascular’ protein binding of antimicrobials in an in vitro two compartment kinetic model. Program and Abstracts of the 25th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract 559. American Society for Microbiology, Washington 1985.

    Google Scholar 

  21. M.N. Dudley, J. Blaser, D. Gilbert and S.H. Zinner: Bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa and other bacteria in an in vitro two-compartment capillary model. Rev. infect. Dis. (1987).

    Google Scholar 

  22. European Organization for Research and Treatment of Cancer: Combination of amikacin and carbenicillin with or without cefazolin as empirical treatment of febrile neutropenic patients. J. clin. Onc. 1, 597–603 (1983).

    Google Scholar 

  23. R. Feld, M. Valdiviesco, G.P. Bodey and V. Rodriquez: A comparative trial of sisomicin therapy by intermittent versus continuous infusion. Am. J. med. Sci. 274, 179–188 (1977).

    Article  Google Scholar 

  24. A.A. Firsov, V.M. Chernykh, S.M. Kuznetsova and S.M. Navashin: Dynamic system for in vitro investigation of antimicrobial effect kinetics by simulating pharmacokinetic profiles of antibiotics. Antibiot. med. Biotechnol. (USSR) 30, 36–43 (1985).

    Google Scholar 

  25. A.U. Gerber, P. Wiprächtiger, U. Stettler-Spichiger and G. Lebek: Constant infusions vs. intermittent doses of gentamicin against Pseudomonas aeruginosa in vitro. J. infect. Dis. 145, 554–560 (1982).

    Article  Google Scholar 

  26. A.U. Gerber, W.A. Craig, H.P. Brugger, C. Feller, A.P. Vastola and J. Brandel: Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J. infect. Dis. 147, 910–917 (1983).

    Google Scholar 

  27. A.U. Gerber, H.P. Brugger, C. Feller, T. Strizko and B. Stalder: Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: Comparison of murine and human pharmacokinetics. J. infect. Dis. 153, 90–97 (1986).

    Article  Google Scholar 

  28. S. Grasso, G. Meinardi, L. deCarneri and V. Tamassia: New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob. Agents Chemother. 13, 570–576 (1978).

    Google Scholar 

  29. D. Greenwood and F. O’Grady: An in vitro model of the urinary bladder. J. antimicrob. Chemother. 4, 113–120 (1978).

    Article  Google Scholar 

  30. D. Greenwood: An in vitro model simulating the hydrokinetic aspects of the treatment of bacterial cystitis. J. Antimicrob. Chemother. 15 (Suppl. A), 103–111 (1985).

    Google Scholar 

  31. R. Haag, P. Lexa and I. Werkhäuser. Artifacts in dilution pharmacokinetic models caused by adherent bacteria. Antimicrob. Agents Chemother. 29, 765–768 (1986).

    Google Scholar 

  32. I. Haller: Combined action of decreasing concentrations of azlocillin and sisomicin on Pseudomonas aeruginosa as assessed in a dynamic in vitro model. Infection 10 (Suppl. 3), 229–233 (1982).

    Article  Google Scholar 

  33. J.G. Jemsek, R.R. Martin, S.B. Greenberg and L.O. Gentry: Antimicrobial susceptibility testing of Haemophilus parainfluenzae by a kinetic killing-curve method. J. infect. Dis. 141, 310–316 (1980).

    Article  Google Scholar 

  34. B. Ledergerber, J. Blaser and R. Lüthy: Computer-controlled in vitro simulation of multiple dosing regimens. J. antimicrob. Chemother. (Suppl. 15A ), 169–175 (1985).

    Google Scholar 

  35. F. Leitner, R.A. Goodhines, R.E.Buck and K. E. Price: Bactericidal activitiy of Cefadroxil, cephalexin and cephradine in an in vitro pharmacokinetic model. J. Antibiotics 32, 718–726 (1979).

    Google Scholar 

  36. E.H. Lennette, A. Balows and W.J. Hausier and J. P. Traunt. Manual of clinical microbiology. 3rd ed. American Society for Microbiology, Washington 1980.

    Google Scholar 

  37. D. Lewis, D. Reeves, B. Widemann and S.H. Zinner: Methodology and evaluation of in vitro models of antimicrobial chemotherapy. J. antimicrob. Chemother. 15 (Suppl. A) 1985.

    Google Scholar 

  38. R.D. Moore, P.S. Lietman and R.S. Craig: Clinical response to aminoglycoside therapy: Importance of the ratio of peak concentration to minimal inhibitory concentration. J. infect. Dis. 155, 93–99 (1987).

    Article  Google Scholar 

  39. J.E. McLaughlin and D.S. Reeves: Clinical and laboratory evidence for inactivation of gentamicin by carbenicillin. Lancet 1, 261–4 (1971).

    Article  Google Scholar 

  40. T. Murakawa, H. Sakamoto, T. Hirose and M. Nishida: New in vitro model for evaluating bactericidal efficacy of antibiotics. Antimicrob. Agents Chemother. 18, 377–381 (1980).

    Google Scholar 

  41. M. Nishida, T. Murakawa, T. Kamimura and N. Okada: Bactericidal activity of cephalosporins in an in vitro model simulating serum levels. Antimicrob. Agents Chemother. 14, 6–12 (1978).

    Google Scholar 

  42. F. O’Grady and J.H. Pennington: Bacterial growth in an in vitro system simulating conditions in the urinary bladder. Br. J. exp. Path. 47, 152–157 (1966).

    Google Scholar 

  43. H. Otaya, A. Ozawa and J. Goto: Mode of action of chemotherapeutic agents against bacteria growing in a continuous flow culture with special reference to the antibacterial effect of cephalothin, erythromycin and kanamycin. In: Chemotherapy, pp. 205–210. Eds. J.D. Williams and A.M. Geddes. Plenum Press, New York 1976.

    Google Scholar 

  44. S.H. Powell, W.L. Thompson, M.A. Luthe, R.C. Stern, D.A. Grossniklaus et al. Once-daily vs. continuous aminoglycoside dosing: efficacy and toxicity in animal studies of gentamicin, netilmicin, and tobramycin. J. infect. Dis. 147, 918–932 (1983).

    Article  Google Scholar 

  45. J.A. Randolph, R.E. Buck, K.E. Price and F. Leitner: Comparative bactericidal effect of ceforanide (BL-S 786) and five other cephalosporins in an in vitro pharmacokinetic model. J. Antibiotics 31, 727–733 (1979).

    Google Scholar 

  46. D.S. Reeves: Advantages and disadvantages of an in vitro model with two compartments connected by a dialyser: results of experiments with ciprofloxacin. J. antimicrob. Chemother. 15 (Suppl. A), 159–169 (1985).

    Article  Google Scholar 

  47. A. Sanfilippo and E. Morvillo: An experimental model for the study of the antibacterial activity of the sulfonamides. Chemotherapy 13, 54–60 (1968).

    Article  Google Scholar 

  48. F. Schlaeffer, J. Blaser and S.H. Zinner: Enhancement of leukocyte killing of aminoglycoside and quinolone induced resistant bacterial subpopulations. Program and Abstracts of the 25th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract 400. American Society for Microbiology, Washington 1985.

    Google Scholar 

  49. F. Schlaeffer, J. Laxon, J. Blaser and S.H. Zinner: Ciprofloxacin enhanced leukocyte killing of drug induced resistant bacteria. Rev. infect. Dis. (1987)in press.

    Google Scholar 

  50. R Schneider, W. Tosch, M. Maurer and O. Zak: Antibacterial effects of cefroxadine, cephalexin and cephradine in a new in vitro pharmacokinetic model. J. Antibiotics 35, 843–849 (1982).

    Google Scholar 

  51. A.H. Seeberg and B. Wiedemann: Application of in vitro models: development of resistance. J. antimicrob. Chemother. 15 (Suppl. A): 241–250 (1985).

    Google Scholar 

  52. P.M. Shah: Bactericidal activity of ampicillin and amoxicillin. J. antimicrob. Chemother. 8 (Suppl. C), 93–99 (1981).

    Google Scholar 

  53. P.M. Shah, K. Racky and W. Stille: In vitro Untersuchungen zum Dosierungsintervall von Cefoperazon. Arzneimittel-Forsch./Drug Res. 31, 482–485 (1981).

    Google Scholar 

  54. P.M. Shah: Activity of imipenem in an in vitro model simulating pharmacokinetic parameters in human blood. J. antimicrob. Chemother. 15 (Suppl. A), 153–158 (1985).

    Google Scholar 

  55. R.D. Toothaker, P.G. Welling and W.A. Craig: An in vitro model for the study of antibacterial dosage regimen design. J. pharm. Sci. 71, 861–864 (1982).

    Article  Google Scholar 

  56. W. Tosch and R. Schnell: Possible approaches to the simulation of antibiotic kinetics and the determination of antibacterial activity in vitro. J. antimicrob. Chemother. 15 (Suppl. A), 117–120 (1985).

    Google Scholar 

  57. L.L. Van Etta, L.R. Peterson and D.N. Gerding: Effect of the ratio of surface area to volume on the penetration of antibiotics into extravascular spaces in an in vitro model. J. infect. Dis. 146, 423–428 (1982).

    Article  Google Scholar 

  58. H. Walther and F.P. Meyer: Klinische Pharmokologie antimikrobieller Arzneimittel. Urban & Schwarzberg, München-Wien-Baltimore 1987.

    Google Scholar 

  59. C.A. White and R.D. Toothaker: Influence of ampicillin elimination half-life on in vitro bactericidal effect. J. antimicrob. Chemother. 15 (Suppl. A), 257–260 (1985).

    Google Scholar 

  60. A.R. White, D.H. Stokes, B. Slocombe and R. Sutherland: Bactericidal effects of amoxicillin/clavulanic acid and ticarcillin/clavulanic acid in in vitro kinetic models. J. antimicrob. Chemother. 15 (Suppl. A), 227–232 (1985).

    Google Scholar 

  61. M.C. Wiemann, J. Blaser, A. Hollmann and P. Calabrisi: An in vitro model for testing anticancer drugs. Clinical Research, 34, 572A (1986).

    Google Scholar 

  62. L. Xerri, P. Orsolini and R. Broggio: In vitro evaluation of ceftazidime (GR 20263), amikacin and sisomicin, in a model simulating serum pharmacokinetics of therapeutic doses. Chemioterapia 3, 271–277 (1984).

    Google Scholar 

  63. O. Zak and M. A. Sande: Correlation of in vitro antimicrobial activity of antibiotics with results of treatment in experimental animal models and human infection. In: Action of antibiotics in patients, Ed. L.D. Sabath, Hans Huber Publishers, Berne, Switzerland 1982.

    Google Scholar 

  64. S.H. Zinner, M. Husson and J. Klastersky: An artificial capillary in vitro model of antibiotic bactericidal activity. J. infect. Dis. 144, 583–587 (1980).

    Article  Google Scholar 

  65. S.H. Zinner, H. Lagast and J. Klastersky: Antistaphylococcal activity of rifampicin with other antibiotics. J. infect. Dis. 144, 365–371 (1981).

    Article  Google Scholar 

  66. S.H. Zinner and J. Blaser: Efficacy of DNA-gyrase inhibitors in experimental animal studies and in pharmacokinetic in vitro models. Res. clin. Forums 7,45–54(1985).

    Google Scholar 

  67. S.H. Zinner, J. Blaser, B.B. Stone and M.C. Groner: Use of in in vitro kinetic model to study antibiotic combinations. J. antimicrob. Chemother. 15 (Suppl. A), 221–226(1985).

    Google Scholar 

  68. S.H. Zinner and J. Blaser: In vitro studies of antibiotic combinations with special emphasis on the evaluation of newly developed methods. J. antimicrob. Chemother. 17 (Suppl. A), 1–5 (1986).

    Google Scholar 

  69. S.H. Zinner, J. Blaser and H. Gaya: Laboratory support for choosing and monitoring antimicrobial therapy in severely ill patients. Am. J. Med. 80 (Suppl. 5C), 59–63 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Blaser, J., Zinner, S.H. (1987). In Vitro Models for the Study of Antibiotic Activities. In: Jucker, E., Meyer, U. (eds) Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques. Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques, vol 31. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9289-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9289-6_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9981-9

  • Online ISBN: 978-3-0348-9289-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics