Skip to main content

Towards the bionic eye — the retina implant: surgical, opthalmological and histopathological perspectives

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Degenerations of the outer retina such as retinitis pigmentosa (RP) lead to blindness due to photoreceptor loss. There is a secondary loss of inner retinal cells but significant numbers of bipolar and ganglion cells remain intact for many years. Currently, no therapeutic option to restore vision in these blind subjects is available. Short-term pattern electrical stimulation of the retina using implanted electrode arrays in subjects blind from RP showed that ambulatory vision and limited character recognition are possible. To produce artificial vision by electrical retinal stimulation, a wireless intraocular visual prosthesis was developed. Images of the environment, taken by a camera are pre-processed by an external visual encoder. The stimulus patterns are transmitted to the implanted device wirelessly and electrical impulses are released by microcontact electrodes onto the retinal surface. Towards a human application, the biocompatibility of the utilised materials and the feasibility of the surgical implantation procedure were stated. In acute stimulation tests, thresholds were determined and proved to be within a safe range. The local and retinotopic activation of the visual cortex measured by optical imaging of intrinsic signals was demonstrated upon electrical retinal stimulation with a completely wireless and remotely controlled retinal implant. Potential obstacles are reviewed and further steps towards a successful prosthesis development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alteheld N, Roessler G, Vobig M, Walter P (2004) The retina implant — new approach to a visual prosthesis. Biomed Tech (Berl) 49: 99–103

    CAS  Google Scholar 

  2. Baig-Silva MS, Hathcock CD, Hetling JR (2005) A preparation for studying electrical stimulation of the retina in vivo in rat. J Neural Eng 2: S29–S38

    Article  PubMed  CAS  Google Scholar 

  3. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH (1984) Prevalence of retinitis pigmentosa in maine. Am J Ophthalmol 97: 357–365

    PubMed  CAS  Google Scholar 

  4. Chowers I, Banin E (2003) Experimental therapeutic modalities for Retinitis pigmentosa. Harefuah 142: 277–280

    PubMed  Google Scholar 

  5. Eckhorn R, Stett A, Schanze T, Gekeler F, Schwahn H, Zrenner E, Wilms M, Eger M, Hesse L (2001) Physiological functional evaluation of retinal implants in animal models. Ophthalmologe 98: 369–375

    Article  PubMed  CAS  Google Scholar 

  6. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29: 281–289

    PubMed  CAS  Google Scholar 

  7. Eckmiller R, Neumann D, Baruth O (2005) Tunable retina encoders for retina implants: why and how. J Neural Eng 2: 91–104

    Article  Google Scholar 

  8. Feucht M, Laube T, Bornfeld N, Walter P, Velikay-Parel M, Hornig R, Richard G (2005) Development of an epiretinal prosthesis for stimulation of the human retina. Ophthalmologe 102: 688–691

    Article  PubMed  CAS  Google Scholar 

  9. Grinvald A, Shoham D, Shmuel A, Glaser DE, Vanzetta I, Shtoyerman E, Slovin H, Wijnbergen C, Hildesheim R, Sterkin A, Arieli A (1999) In-vivo optical imaging of cortical architecture and dynamics. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin, Heidelberg, pp 893–969

    Google Scholar 

  10. Gusseck H (2005) Retinal implants Patients’ expectations. Ophthalmologe 102: 950–956

    Article  PubMed  CAS  Google Scholar 

  11. Hijazi N, Krisch I, Hosticka BJ (2002) Wireless power and data transmission system for a micro implantable intraocular vision aid. Biomed Tech (Berl) 47Suppl 1: 174–175

    Google Scholar 

  12. Humayun MS, de Juan E (1998) Artificial vision. Eye 12: 605–607

    PubMed  Google Scholar 

  13. Humayun MS, de Juan E Jr, Dagnelie G, Greenberg RJ, Propst RH, Philips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114: 40–46

    PubMed  CAS  Google Scholar 

  14. Humayun MS, de Juan E Jr, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39: 2569–2576

    Article  PubMed  CAS  Google Scholar 

  15. Humayun MS, Prince M, de Juan E Jr (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40: 143–148

    PubMed  CAS  Google Scholar 

  16. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43: 2573–2581

    Article  PubMed  Google Scholar 

  17. Kerdraon YA, Downie JA, Suaning GJ, Capon MR, Coroneo MT, Lovell NH (2002) Development and surgical implantation of a vision prosthesis model into the ovine eye. Clin Experiment Ophthalmol 30: 36–40

    Article  PubMed  Google Scholar 

  18. Laube T, Schanze T, Brockmann C, Bolle I, Stieglitz T, Bornfeld N (2003) Chronically implanted epidural electrodes in Gottinger minipigs allow function tests of epiretinal implants. Graefes Arch Clin Exp Ophthalmol 241: 1013–1019

    Article  PubMed  Google Scholar 

  19. Meyer JU, Stieglitz T, Scholz O, Haberer W, Beutel H (2001) High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Trans Advanced Packaging 24: 366–374

    Article  Google Scholar 

  20. Nadig MN (1999) Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity. Clin Neurophysiol 110: 1545–1553

    Article  PubMed  CAS  Google Scholar 

  21. Rizzo JF 3rd, Goldbaum S, Shahin M, Denison TJ, Wyatt J (2004) In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Restor Neurol Neurosci. 22(6): 429–443

    PubMed  CAS  Google Scholar 

  22. Rizzo JF 3rd, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108: 13–14

    Article  PubMed  Google Scholar 

  23. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shite D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44: 5355–5361

    Article  PubMed  Google Scholar 

  24. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shite D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44: 5362–5369

    Article  PubMed  Google Scholar 

  25. Santos A, Humayun MS, de Juan E Jr (1997) Preservation of the inner retina in retinitis pigmantosa: a morphometric analysis. Arch Ophthalmol 115: 511–515

    PubMed  CAS  Google Scholar 

  26. Schanze T, Greve N, Hesse L (2003) Towards the cortical representation of form and motion stimuli generated by aretina implant. Graefes Arch Clin Exp Ophthalmol 241: 685–693

    Article  PubMed  Google Scholar 

  27. Schneider A, Stieglitz T (2004) Implantable flexible electrodes for functional electrical stimulation. Med Device Technol 15: 16–18

    PubMed  Google Scholar 

  28. Sharma RK, Ehinger B (1999) Management of hereditary retinal degenerations: present status and future directions. Surv Ophthalmol 43: 427–444

    Article  PubMed  CAS  Google Scholar 

  29. Stieglitz T (2001) Implantable microsystems for monitoring and neural rehabilitation, part I. Med Device Technol 12: 16–18, 20—21

    PubMed  CAS  Google Scholar 

  30. Stieglitz T, Beutel H, Keller R, Blau C, Meyer JU (1997) Development of flexible stimulation devices for a retina implant system. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2307–2310

    Google Scholar 

  31. Stieglitz T, Beutel H, Schuettler M, Meyer JU (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdev 2: 283–294

    Article  Google Scholar 

  32. Stieglitz T, Keller R, Beutel H, Meyer JU (2000) Microsystem integration techniques for intraocular vision prostheses using flexible polyimide-foils. Proceedings of the MICRO.tec September 25–27, 2000, Hannover/Germany, pp 467–472

    Google Scholar 

  33. Stieglitz T, Schuettler M, Koch KP (2004) Neural prostheses in clinical applications — trends from precision mechanics towards biomedical microsystems in neurological rehabilitation. Biomed Tech (Berl) 49: 72–77

    Article  CAS  Google Scholar 

  34. Stieglitz T (2004) Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. J Nanosci Nanotechnol 4: 496–503

    Article  PubMed  CAS  Google Scholar 

  35. Stone JL, Barlow WE, Humayun MS, de Juan E Jr, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110: 1634–1639

    PubMed  CAS  Google Scholar 

  36. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238: 315–318

    Article  PubMed  CAS  Google Scholar 

  37. Walter P, Kisvarday ZF, Gortz M, Alteheld N, Rossler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46: 1780–1785

    Article  PubMed  Google Scholar 

  38. Walter P, Mokwa W (2005) Epiretinal visual prostheses. Ophthalmologe 102: 933–940

    Article  PubMed  CAS  Google Scholar 

  39. Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19: 546–552

    Article  PubMed  CAS  Google Scholar 

  40. Wilms M, Eger M, Schanze T, Eckhorn R (2003) Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex. Vis Neurosci 20: 543–555

    Article  PubMed  Google Scholar 

  41. Yanai D, Lakhanpal RR, Weiland JD, Mahadevappa M, Van Boemel G, Fujii GY, Greenberg R, Caffey S, de Juan E Jr, Humayun MS (2003) The value of preoperative tests in the selection of blind patients for a permanent microelectronic implant. Trans Am Ophthalmol Soc 101: 223–228; discussion 228–230

    PubMed  Google Scholar 

  42. Zrenner E (2002) Will retinal implants restore vision? Science 295: 1022–1025

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Alteheld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag/Wien

About this chapter

Cite this chapter

Alteheld, N., Roessler, G., Walter, P. (2007). Towards the bionic eye — the retina implant: surgical, opthalmological and histopathological perspectives. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_56

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics