Skip to main content

Structure Formation in Thin Liquid Films: Interface Forces Unleashed

  • Chapter
Thin Films of Soft Matter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 490))

  • 1040 Accesses

Abstract

We present a conclusive overview of the stability conditions and the dewetting scenarios of thin liquid coatings. The stability of thin films is given by the effective interface potential φ (h) of the system and depends among other parameters on the film thickness h. In the case of unstable or metastable films holes will appear in the formerly uniform layer and the film dewets the substrate. We describe the analysis of emerging hole patterns and how to distinguish between different dewetting scenarios. From this analysis we derive the effective interface potential for our particular system, φ(h), which agrees quantitatively with what is computed from the optical properties of the system. Our studies on thin polystyrene films on Si wafers of variable Si oxide layer thickness demonstrate that the assumption of additivity of dispersion potentials in multilayer systems yields good results and are also in accordance with recent numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J. Becker. Numerische Simulation der Bildung fluider Strukturen auf inhomogenen Oberflächen. Thesis, Bonn, 2004.

    Google Scholar 

  • J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey. Complex dewetting scenarios captured by thin-film models. Nature Mat., 2:59–63, 2003.

    Article  Google Scholar 

  • J. Bischof. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Thesis, Konstanz, 1996.

    Google Scholar 

  • J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett., 77:1536–1539, 1996.

    Article  Google Scholar 

  • R. Blossey. Nucleation at first-order wetting transitions. Int. J. Mod. Phys. B, 9:3489–3525, 1995.

    Article  Google Scholar 

  • F. Brochard-Wyart and J. Daillant. Drying of solids wetted by thin liquid films. Can. J. Phys., 68:1084–1088, 1989.

    Google Scholar 

  • S. G. Croll. Origin of residual internal-stress in solvent-cast thermoplastic coatings. J. Appl. Polym. Sci., 23:847–858, 1979.

    Article  Google Scholar 

  • S. Dietrich. Wetting phenomena. volume 12 of Phase Transitions and Critical Phenomena, page 1. Academic Press, London, 1988.

    Google Scholar 

  • R. Fetzer, K. Jacobs, A. Münch, B. Wagner, and T. P. Witelski. New slip regimes and the shape of dewetting thin liquid films. Phys. Rev. Lett., 95:127801, 2005.

    Article  Google Scholar 

  • R. Fetzer, M. Rauscher, J. Becker, G. Grün, R. Seemann, K. Jacobs, and K Mecke. Thermal noise induences fuid fow in thin films during spinodal dewetting. to be published, 2006.

    Google Scholar 

  • A. N. Frumkin. On the phenomena of wetting and sticking of bubbles (in Russian). Zh. Fiz. Khim., 12:337, 1938.

    Google Scholar 

  • S. Herminghaus. Polymer thin films and surfaces: Possible effects of capillary waves. Eur. Phys. J. E, 8:237–243, 2002.

    Article  Google Scholar 

  • S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and S. Schlagowski. Spinodal dewetting in liquid crystal and liquid metal films. Science, 282:916–919, 1998.

    Article  Google Scholar 

  • S. Herminghaus, K. Jacobs, and R. Seemann. The glass transition of thin polymer films: Some questions, and a possible answer. Eur. Phys. J. E, 5:531–538, 2001.

    Article  Google Scholar 

  • S. Herminghaus, K. Jacobs, and R. Seemann. Viscoelastic dynamics of polymer thin films and surfaces. Eur. Phys. J. E, 12:101–110, 2003.

    Article  Google Scholar 

  • S. Herminghaus, R. Seemann, and K. Jacobs. Generic morphologies of viscoelastic dewetting fronts. Phys. Rev. Lett., 89:056101, 2002.

    Article  Google Scholar 

  • S. Herminghaus, R. Seemann, and K. Landfester. Polymer surface melting mediated by capillary waves. Phys. Rev. Lett., 93:017801, 2004.

    Article  Google Scholar 

  • J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press, London, 1992.

    Google Scholar 

  • K. Jacobs, S. Herminghaus, and K. R. Mecke. Thin liquid polymer films rupture via defects. Langmuir, 14:965–969, 1998a.

    Article  Google Scholar 

  • K. Jacobs, R. Seemann, and K. Mecke. Statistical Physics and Spatial Statistics. Springer, Heidelberg, 2000.

    Book  Google Scholar 

  • K. Jacobs, R. Seemann, G. Schatz, and S. Herminghaus. Growth of holes in liquid films with partial slippage. Langmuir, 14:4961, 1998b.

    Article  Google Scholar 

  • K. Kargupta, R. Konnur, and A. Sharma. Spontaneous dewetting and ordered patterns in evaporating thin liquid films on homogeneous and heterogeneous substrates. Langmuir, 17:1294–1305, 2001.

    Article  Google Scholar 

  • H. I. Kim, C. M. Mate, K. A. Hannibal, and S. S. Perry. How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett., 82:3496–3499, 1999.

    Article  Google Scholar 

  • R. Konnur, K. Kargupta, and A. Sharma. Instability and morphology of thin liquid films on chemically heterogeneous substrates. Phys. Rev. Lett., 84:931–934, 2000.

    Article  Google Scholar 

  • J. Koplik and J. R. Banavar. Molecular simulations of dewetting. Phys. Rev. Lett., 84:4401–4404, 2000.

    Article  Google Scholar 

  • K. Mecke. Integralgeometrie in der Statistischen Physik — Perkolation, komplexe Flüssigkeiten und die Struktur des Universums, Reihe Physik Bd. 25. Verlag Harri Deutsch, Frankfurt a.M., 1994.

    Google Scholar 

  • V. S. Mitlin. Dewetting of solid surface: Analogy with spinodal decomposition. J. Colloid Interface Sci., 156:491–497, 1993.

    Article  Google Scholar 

  • V. S. Mitlin. On dewetting conditions. Colloid Surf. A-Physicochem. Eng. Asp., 89:97–101, 1994.

    Article  Google Scholar 

  • A. Münch. Dewetting rates of thin liquid films. J. Phys.-Condes. Matter, 17:S309–S318, 2005.

    Article  Google Scholar 

  • C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, and G. Grün. Correlated dewetting patterns in thin polystyrene films. J. Phys.-Condes. Matter, 15:S421–S426, 2003a.

    Article  Google Scholar 

  • C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, and G. Grün. Satellite hole formation during dewetting: Experiment and simulation. J. Phys.-Condes. Matter, 15:3355–3366, 2003b.

    Article  Google Scholar 

  • D. Podzimek, A. Saier, R. Seemann, K. Jacobs, and S. Herminghaus. A universal nucleation mechanism for solvent cast polymer film rupturel. arXiv:condmat/0105065, 2001.

    Google Scholar 

  • G. Reiter. Dewetting of thin polymer films. Phys. Rev. Lett., 68:75–78, 1992.

    Article  MathSciNet  Google Scholar 

  • G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, and E. Raphaël. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater., 4:754–758, 2005.

    Article  Google Scholar 

  • E. Ruckenstein and R. K. Jain. Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. II, 70:132–147, 1974.

    Article  Google Scholar 

  • M. Schick. Liquids at Interfaces. Elsevier Science, Amsterdam, 1989.

    Google Scholar 

  • R. Seemann, S. Herminghaus, and K. Jacobs. Dewetting patterns and molecular forces: A reconciliation. Phys. Rev. Lett., 86:5534–5537, 2001a.

    Article  Google Scholar 

  • R. Seemann, S. Herminghaus, and K. Jacobs. Gaining control of pattern formation of dewetting liquid films. J. Phys.-Cond. Mat. 13:4925–4938, 2001b.

    Article  Google Scholar 

  • R. Seemann, S. Herminghaus, and K. Jacobs. Shape of a liquid front upon dewetting. Phys. Rev. Lett., 87:196101, 2001c.

    Article  Google Scholar 

  • R. Seemann, S. Herminghaus, C. Neto, S. Schlagowski, D. Podzimek, R. Konrad, H. Mantz, and K. Jacobs. Dynamics and structure formation in thin polymer melt films. J. Phys.-Condes. Matter, 17:S267–S290, 2005.

    Article  Google Scholar 

  • R. Seemann, K. Jacobs, and R. Blossey. Polystyrene nanodroplets. J. Phys.-Condes. Matter, 13:4915–4923, 2001d.

    Article  Google Scholar 

  • R. Seemann, K. Jacobs, K. Landfester, and S. Herminghaus. submitted. J. Pol. Sci. B, 2006.

    Google Scholar 

  • M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, and R. A. L. Jones. Interfacial instability driven by dispersive forces: The early stages of spinodal dewetting of a thin polymer film on a polymer substrate. Phys. Rev. Lett., 81:5173–5176, 1998.

    Article  Google Scholar 

  • A. Sharma. Many paths to dewetting of thin films: anatomy and physiology of surface instability. Eur. Phys. J. E, 12:397–407, 2003.

    Article  Google Scholar 

  • A. Sharma and R. Khanna. Pattern formation in unstable thin liquid films. Phys. Rev. Lett., 81:3463–3466, 1998.

    Article  Google Scholar 

  • A. Sharma and R. Khanna. Pattern formation in unstable thin liquid films under the influence of antagonistic short-and long-range forces. J. Chem. Phys., 110:4929–4936, 1999.

    Article  Google Scholar 

  • T. G. Stange, D. F. Evans, and W. A. Hendrickson. Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir, 13:4459–4465, 1997.

    Article  Google Scholar 

  • M. Sze. Physics of Semiconductor Devices. Wiley, New York, 1981.

    Google Scholar 

  • U. Thiele. Open questions and promising new fields in dewetting. Eur. Phys. J. E., 12:409–416, 2003.

    Article  Google Scholar 

  • U. Thiele, K. Neuffer, Y. Pomeau, and M. G. Velarde. On the importance of nucleation solutions for the rupture of thin liquid films. Colloid Surf. A, 206:135–155, 2002.

    Article  Google Scholar 

  • U. Thiele, M. G. Velarde, and K. Neuffer. Dewetting: Film rupture by nucleation in the spinodal regime. Phys. Rev. Lett., 87:016104, 2001.

    Article  Google Scholar 

  • O. K. C. Tsui, Y. J. Wang, H. Zhao, and B. Du. Some views about the controversial dewetting morphology of polystyrene films. Eur. Phys. J. E, 12:417–423, 2003.

    Article  Google Scholar 

  • A. Vrij. Possible mechanism for the spontaneous rupture of thin free liquid films. Disc. Faraday Soc., 42:23–33, 1966.

    Article  Google Scholar 

  • M. B. Williams and S. H. Davis. Nonlinear theory of film rupture. J. Colloid Interface Sci., 90:220–228, 1982.

    Article  Google Scholar 

  • R. Xie, A. Karim, J. F. Douglas, C. C. Han, and R. A. Weiss. Spinodal dewetting of thin polymer filsm. Phys. Rev., Lett., 81:1251–1254, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Seemann, R., Herminghaus, S., Jacobs, K. (2007). Structure Formation in Thin Liquid Films: Interface Forces Unleashed. In: Kalliadasis, S., Thiele, U. (eds) Thin Films of Soft Matter. CISM International Centre for Mechanical Sciences, vol 490. Springer, Vienna. https://doi.org/10.1007/978-3-211-69808-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-69808-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-69807-5

  • Online ISBN: 978-3-211-69808-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics