Skip to main content

Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture

  • Conference paper
Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

In Parkinson’s disease clinical and experimental evidence suggest that neuroinflammatory changes in cytokines caused by microglial activation contribute to neuronal death. Experimentally, neuroinflammation of dopaminergic neurons can be evoked by lipopolysaccharide (LPS) exposure. In mesencephalic primary cultures LPS (100μg/ml) resulted in 30–50% loss of dendritic processes, changes in the perikarya, cellular atrophy and neuronal cell loss of TH-immunoreactive (TH+) cells. iNOS activity was increased dose dependently as well as prostaglandin E2 concentrations. Ginsenosides, as the active compounds responsible for ginseng action, are reported to have antioxidant and anti-inflammatory effects. Here ginsenoside Rd was used to counteract LPS neurodegeneration. Partial reduction of LPS neurotoxic action was seen in dopaminergic neurons. Cell death by LPS as well as neuroprotective action by ginsenoside Rd was not selective for dopaminergic neurons. Neuronal losses as well as cytoprotective effects were similar when counting NeuN identified neurons. The anti-inflammatory effect of ginsenoside Rd could equally be demonstrated by a reduction of NO-formation and PGE2 synthesis. Thus, protective mechanisms of ginsenoside Rd may involve interference with iNOS and COX-2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bae EA, Kim EJ, Park JS (2006) Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med 72(7): 627–633

    Article  PubMed  CAS  Google Scholar 

  • Bal-Price A, Matthias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, Superoxide and peroxynitrite formation. Biochem Soc Trans 21: 330–334

    PubMed  CAS  Google Scholar 

  • Cho JY, Park J, Yoo ES, Baik KU, Park MH (1998) Effect of ginseng saponin in tumor necrosis factor-α production and T cell proliferation. Yakhak Hoegi 43: 296–301

    Google Scholar 

  • Chock VY, Giffard RG (2005) Development of neonatal murine microglia in vitro: changes in response to lipopolysaccharide and ischemia-like injury. Pediatr Res 57: 475–480

    Article  PubMed  CAS  Google Scholar 

  • Choi SS, Lee JK, Han EJ, Han KJ, Lee HK (2003) Effect of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF-alpha in C6 rat glioma cells. Arch Pharm Res 26: 375–382

    PubMed  CAS  Google Scholar 

  • Gayle DA, Ling ZD, Tong CW, Landers T, Lipton JW (2001) Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factors-α, interleukin-1ß, and nitric oxide. Dev Brain Res 133: 27–35

    Article  Google Scholar 

  • Heneka MT, Feinstein DL, Galea E (1999) Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J Neuroimmunol 100: 156–168

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Hirsch EC (2003) Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 53: S49–S60

    Article  PubMed  CAS  Google Scholar 

  • Jeong CS, Hyun JE, Kim YS (2003) Ginsenoside Rbl: the anti-ulcer constituent from the head of Panax ginseng. Arch Pharm Res 26: 906–911

    PubMed  CAS  Google Scholar 

  • Jiang KY, Qian ZN (1995) Effect of Panax notoginseng saponins on posthypoxic cell damage of neurons in vitro. Zhongguo Yaoli Xuebao 16: 399–402

    PubMed  CAS  Google Scholar 

  • Keum YS, Han SS, Chun KS, Park KK (2003) Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat Res 523–524: 75–85

    PubMed  Google Scholar 

  • Kim S, Rhim H (2004) Ginsenosides inhibit NMDA receptor-mediated epileptic discharge in cultured hippocampal neurons. Arch Pharm Res 27: 524–530

    Article  PubMed  CAS  Google Scholar 

  • Kyrkanides S, Moore AH, Olschowka JA, Daeschner JC, Williams JP (2002) Cyclooxygenase-2 modulates brain inflammation-related gene expression in CNS radiation injury. Mol Brain Res 104: 159–169

    Article  PubMed  CAS  Google Scholar 

  • Langford RM (2006) Pain management today — what have we learned? Clin Rheumatol 25: 2–8

    Article  Google Scholar 

  • Lee JK, Choi SS, Lee HK, Han KJ, Han EJ, Suh HW (2003) Effects of ginsenoside Rd and decursinol on the neurotoxic responses induced by kainic acid in mice. Planta Med 69: 230–234

    Article  PubMed  CAS  Google Scholar 

  • Li FQ, Wang T, Pei Z, Liu B, Hong JS (2005) Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammationmediated degeneration of dopaminergic neurons. J Neural Transm 112: 331–347

    Article  PubMed  CAS  Google Scholar 

  • Li JQ, Zhang JT (1997) Effect of age and ginsenoside Rgl on membrance fluidity of cortical cells in rats. Yao Xue Xue Bao 32: 23–27

    PubMed  CAS  Google Scholar 

  • Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. Trends Pharmacol Sci 24(8): 395–401

    Article  PubMed  CAS  Google Scholar 

  • Min JK, Kim JH, Cho YL, Kwon YG (2006) (20S) Rg3 prevents endothelial cells apoptosis via inhibition of the mitochondrial apoptotic caspase pathway. Biochem Biophys Res Commun 349: 987–994

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Rev 48: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201–211

    PubMed  CAS  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79: 1193–1226

    PubMed  CAS  Google Scholar 

  • Nishiyama N, Cho SI, Kitagama I, Saito H (1994) Malonylginsenoside Rbl potentiates nerve growth factor (NGF)-induced neurite outgrowth of cultured chick embryonic dorsal root ganglia. Biol Pharm Bull 17: 509–513

    PubMed  CAS  Google Scholar 

  • Park EK, Shin YW, Lee HU, Kim SS, Lee YC (2005) Inhibitory effect of ginsenoside Rbl and compound K on NO and prostaglandin E2 biosyntheses of RAW 264.7 cells induced by lipopolysaccaride. Biol Pharm Bull 28: 652–656

    Article  PubMed  CAS  Google Scholar 

  • Radad K, Gille G, Moldzio R, Saito H, Rausch WD (2004) Ginsenosides Rbl and Rgl effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res 1021: 41–53

    Article  PubMed  CAS  Google Scholar 

  • Radad K, Rausch WD, Gille G (2006) Rotenone induces cell death in primary dopaminergic culture by increase ROS production and inhibiting mitochondrial respiration. Neurochem Int 49: 379–386

    Article  PubMed  CAS  Google Scholar 

  • Ruano D, Revilla E, Gavilan MP, Vizuete ML (2006) Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience 104: 1157–1168

    Article  CAS  Google Scholar 

  • Smolinski AT, Pestka JJ (2003) Modulation of lipopolysaccharide-induced proinflammatory cytokine production in vitro and in vivo by the herbal constituents apigenin (chamomile), ginsenoside Rbl and parthenolide (feverfew). Food Chem Toxicol 41: 1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Takadera T, Ohyashiki T (2006) Prostaglandin E2 deteriorates N-methyl-D-aspartate receptor-mediated cytotoxicity possibly by activating EP2 receptors in cultured cortical neurons. Life Sci 78: 1878–1883

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Liu B, Zhang W (2004) Andrographolide reduces inflammationmediated dopaminergic neurodegeneration in mesencephalic neuronglia cultures by inhibiting microglial activation. J Pharmacol Exp Ther 308: 975–983

    Article  PubMed  CAS  Google Scholar 

  • Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of κB kinase-β. Nature 396: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Yokozawa T, Satoh A, Cho EJ (2004) Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 56: 107–113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Lin, WM., Zhang, YM., Moldzio, R., Rausch, WD. (2007). Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics