Skip to main content

Abstract

Chemical bath deposition encompasses a variety of routes for producing functional oxide films and coatings at relatively low temperature by immersing a substrate in a liquid solution. Films of dozens of single- and multi-component oxide materials have been synthesized, mostly from aqueous precursor solutions, at temperatures below 100 °C, and on substrates that vary widely in their chemistries and topographies. This chapter focuses on three aspects of the chemical principles that govern the formation of such films. The first aspect is solution chemistry: the interrelated effects of solution temperature, pH, and concentration needed to generate the oxide material, and which influence all subsequent considerations of the film deposition process. The second aspect is the interactions between the substrate and the growing film, which can be utilized to promote or suppress film attachment and to control the microstructure and spatial distribution of the film. The third aspect addresses practical considerations of a deposition process, such as design factors (other than solution parameters) that affect growth rates and film thicknesses. The chapter concludes with a discussion of the limitations of CBD processes for oxide film synthesis, and of the most promising potential applications and areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This presumes that the Hamaker coefficient for the two solid surfaces and the interposing liquid medium is positive. This is usually the case for aqueous solutions, oxide precipitates, and the substrates discussed here and in the literature cited.

References

  1. Hodes G (2003) Chemical solution deposition of semiconductor films. Marcel Dekker, New York

    Google Scholar 

  2. Niesen TP, De Guire MR (2001) Review: deposition of ceramic thin films at low temperatures from aqueous solutions. J Electroceram 6:169

    Article  Google Scholar 

  3. Hodes G (2007) Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys Chem Chem Phys 9:2181

    Article  Google Scholar 

  4. Matijevic E (1985) Production of monodispersed colloidal particles. Ann Rev Mater Sci 15:483

    Google Scholar 

  5. Baes CF, Mesmer RE Jr (1986) The hydrolysis of cations. Krieger, New York

    Google Scholar 

  6. Bunker BC, Rieke PC, Tarasevich BJ, Campbell AA, Fryxell GE, Graff GL, Song L, Liu J, Virden JW, McVay GL (1994) Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 264:48

    Article  Google Scholar 

  7. Deki S, Miki H, Sakamoto MA, Mizuhata M (2007) Fabrication of copper ferrite thin films from aqueous solution by the liquid-phase deposition method. Chem Lett 36:518

    Article  Google Scholar 

  8. Saito Y, Sekiguchi Y, Mizuhata M, Deki S (2007) Continuous deposition system of SnO2 thin film by the liquid phase deposition (LPD) method. J Ceram Soc Jap 115:856

    Article  Google Scholar 

  9. Deki S, Nakata A, Sakakibara Y, Mizuhata M (2008) Deposition of metal oxide films at liquid-liquid interface by the liquid phase deposition method. J Phys Chem C 112:13535

    Article  Google Scholar 

  10. Mizuhata M, Miyake T, Nomoto Y, Deki S (2008) Deep reactive ion etching (Deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method. Microelectron Eng 85:355

    Article  Google Scholar 

  11. Deki S, Aoi Y, Hiroi O, Kajinami A (1996) Titanium (IV) oxide thin films prepared from aqueous solution. Chem Lett 25:433

    Article  Google Scholar 

  12. Kawahara H, Honda H (1984) Method for producing glass coated with titanium oxide film. Japan Patent 59141441A

    Google Scholar 

  13. Nicolau YF (1985) Solution deposition of thin solid compound films by a successive ionic-layer absorption and reaction process. Appl Surf Sci 22–23:1061

    Article  Google Scholar 

  14. Ristov M, Sinadinovski GJ, Grozdanov I (1985) Chemical deposition of Cu2O thin films. Thin Solid Films 123:63

    Article  Google Scholar 

  15. Ristov M, Sinadinovski GJ, Grozdanov I, Mitreski M (1987) Chemical deposition of ZnO films. Thin Solid Films 149:65

    Article  Google Scholar 

  16. Tolstoy VP (2006) Successive ionic layer deposition. The use in nanotechnology. Uspekhi Khimii 75:183

    Google Scholar 

  17. Nakanishi T, Masuda Y, Koumoto K (2005) Deposition of γ-FeOOH, Fe3O4 and Fe on Pd-catalyzed substrates. J Cryst Growth 284:176

    Article  Google Scholar 

  18. Gao Y, Koumoto K (2005) Bio-inspired ceramic thin film processing: present status and future perspective. J Cryst Growth Des 5:1983

    Article  Google Scholar 

  19. Parikh H, De Guire MR (2009) Recent progress in the synthesis of oxide materials from liquid solutions. J Ceram Soc Japan 117:228

    Article  Google Scholar 

  20. Abe M (2000) Ferrite plating: a chemical method preparing oxide magnetic films at 24-100°C, and its applications. Electrochim Acta 45:3337

    Article  Google Scholar 

  21. Abe M (2000) A soft solution processing technique for preparing ferrite films and their applications. MRS Bull 25:51

    Article  Google Scholar 

  22. Lipowsky P, Jia S, Hoffmann RC, Jin-Phillipp NY, Bill J, Ruhle M (2006) Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO. Int J Mater Res 97:607

    Google Scholar 

  23. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ (2002) Biomimetic arrays of oriented helical ZnO nanorods and columns. J Am Chem Soc 124:12954

    Article  Google Scholar 

  24. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821

    Article  Google Scholar 

  25. Yahiro J, Kawano T, Imai H (2007) Nanometric morphological variation of zinc oxide crystals using organic molecules with carboxy and sulfonic groups. J Colloid Interface Sci 310:302

    Article  Google Scholar 

  26. Hoffmann RC, Jia SJ, Bartolomé JC, Fuchs TM, Bill J, Graat PCJ, Aldinger F (2003) Growth of thin ZnO films from aqueous solutions in the presence of PMMA-graft-PEO copolymers. J Eur Ceram Soc 23:2119

    Article  Google Scholar 

  27. Hoffmann RC, Jia S, Bill J, De Guire MR, Aldinger F (2004) Influences of additives on the formation of ZnO thin films by forced hydrolysis. J Ceram Soc Jap 112:1089

    Google Scholar 

  28. Hoffmann RC, Jia SJ, Jeurgens LPH, Bill J, Aldinger F (2006) Influence of polyvinylpyrrolidone on the formation and properties of ZnO thin films in chemical bath deposition. Mater Sci Eng C Biomim Supramol Syst 26:41

    Article  Google Scholar 

  29. Lipowsky P, Hedin N, Bill J, Hoffmann LC, Ahniyaz A, Aldinger F, Bergstrom L (2008) Controlling the assembly of nanocrystalline ZnO films by a transient amorphous phase in solution. J Phys Chem C 112:5373

    Article  Google Scholar 

  30. Gerstel P, Lipowsky P, Durupthy O, Hoffmann RC, Bellina P, Bill J, Aldinger F (2006) Deposition of zinc oxide and layered basic zinc salts from aqueous solutions containing amino acids and dipeptides. J Ceram Soc Jap 114:911

    Article  Google Scholar 

  31. Gerstel P, Hoffmann RC, Lipowsky P, Jeurgens LPH, Bill J, Aldinger F (2006) Mineralization of zinc salts from aqueous solutions directed by amino acids and peptides. Chem Mater 18:179

    Article  Google Scholar 

  32. Bill J, Hoffmann RC, Fuchs TM, Aldinger F (2002) Deposition of ceramic materials from aqueous solution induced by organic templates. Zeitschrift Für Metallkunde 93:478

    Article  Google Scholar 

  33. Sampathkumaran U, De Guire MR, Wang RR (2001) Hydroxyapatite coatings on titanium. Adv Eng Mater 3:401

    Article  Google Scholar 

  34. Zou L, De Guire M, Wang R (2006) Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium. Int J Mater Res 97:760

    Google Scholar 

  35. Kittaka S, Uchida N, Katayama M, Doi A, Fukuhara M (1991) Effect of intercalation of metal ions on the colloidal and solid properties of vanadium pentaoxide hydrate, V2O5 nH2O. Colloid Polym Sci 269:835

    Article  Google Scholar 

  36. Hoffmann RC, Jeurgens LPH, Wildhack S, Bill J, Aldinger F (2004) Deposition of composite titania/vanadia thin films by chemical bath deposition. Chem Mater 16:4199

    Article  Google Scholar 

  37. Shyue JJ, De Guire MR, Nakanishi T, Masuda Y, Koumoto K, Sukenik CN (2004) Acid-base properties and zeta potentials of self-assembled monolayers obtained via in situ transformations. Langmuir 20:8693

    Article  Google Scholar 

  38. Attard P (2003) Nanobubbles and the hydrophobic interaction. Adv Colloid Interface Sci 104:75

    Article  Google Scholar 

  39. Sagiv J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102:92

    Article  Google Scholar 

  40. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533

    Article  Google Scholar 

  41. Whitesides GM (1995) Self-assembling materials. Sci Am 9:114

    Google Scholar 

  42. Barczewski M, Walheim S, Heiler T, Blaszczyk A, Mayor M, Schimmel T (2010) High aspect ratio constructive nanolithography with a photo-dimerizable molecule. Langmuir 26:3623

    Article  Google Scholar 

  43. Tang L, Salamon M, De Guire MR (2010) Cerium oxide thin films on solid oxide fuel cell anodes. Sci Adv Mater 2:79

    Article  Google Scholar 

  44. Gao Y, Nagai M (2006) Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells. Langmuir 22:3936

    Article  Google Scholar 

  45. Gao Y, Nagai M, Seo WS, Koumoto K (2007) Template-free self-assembly of a nanoporous TiO2 thin film. J Am Ceram Soc 90:831

    Article  Google Scholar 

  46. Shyue JJ, De Guire MR (2005) Single-step preparation of mesoporous, anatase-based titanium-vanadium oxide and its application. J Am Chem Soc 127:12736

    Article  Google Scholar 

  47. Nakata A, Mizuhata M, Deki S (2007) Novel fabrication of highly crystallized nanoparticles in the confined system by the liquid phase deposition (LPD) method. Electrochim Acta 53:179

    Article  Google Scholar 

  48. Lipowsky P, Hoffmann RC, Welzel U, Bill J, Aldinger F (2007) Site-selective deposition of nanostructured ZnO thin films from solutions containing polyvinylpyrrolidone. Adv Funct Mater 17:2151

    Article  Google Scholar 

  49. Strohm H, Löbmann P (2005) Liquid-phase deposition of TiO2 on polystyrene latex particles functionalized by the adsorption of polyelectrolytes. Chem Mater 17:6772

    Article  Google Scholar 

  50. Aoi Y, Kambayashi H, Deguchi T, Yato K, Deki S (2007) Synthesis of nanostructured metal oxide by liquid-phase deposition. Electrochim Acta 53:175

    Article  Google Scholar 

  51. Mizuhata M, Kida Y, Deki S (2007) Enhancement of photoluminescence from Eu3+ doped ZrO2 in SnO2 inverse opal structure prepared by the liquid phase infiltration method. J Ceram Soc Jap 115:724

    Article  Google Scholar 

  52. Burghard Z, Tucic A, Jeurgens LRH, Hoffmann RC, Bill J, Aldinger F (2007) Nanomechanical properties of bioinspired organic-inorganic composite films. Adv Mater 19:970

    Article  Google Scholar 

  53. Lipowsky P, Burghard Z, Jeurgens LPH, Bill J, Aldinger F (2007) Laminates of zinc oxide and poly(amino acid) layers with enhanced mechanical performance. Nanotechnology 18:345707

    Article  Google Scholar 

  54. Goto Y, Tamaura Y, Abe M, Gomi M (1988) Improvement in deposition rate and quality of films prepared by thin liquid-film ferrite plating method. IEEE Transl J Magn Jpn 3:159

    Article  Google Scholar 

  55. Goto Y, Tamaura Y, Gomi M, Abe M (1987) Ferrite plating by means of thin film of reaction solution; ‘thin liquid-film method’. IEEE Transl J Magn Jpn 2:235

    Article  Google Scholar 

  56. Supothina S, De Guire MR, Heuer AH (2003) Nanocrystalline SnO2 thin films via liquid flow deposition. J Am Ceram Soc 86:2074

    Article  Google Scholar 

  57. Fuchs TM, Hoffmann RC, Niesen TP, Tew H, Bill J, Aldinger F (2002) Deposition of titania thin films from aqueous solution by a continuous flow technique. J Mater Chem 12:1597

    Article  Google Scholar 

  58. Niesen TP, Sampathkumaran U, Fuchs T, De Guire MR, Bill J, Aldinger F (2000) Deposition of nanocrystalline zirconia thin films on organic self-assembled monolayers by a continous flow technique. In: Proceedings of MATERIALS WEEK 2000—symposium L4 on synthesis and technological applications of nanocrystallites and materials assembled from nanometer-sized clusters, session – synthesis and processing, Werkstoffwoche-Partnerschaft GbR. http://www.materialsweek.org/proceedings

  59. Deki S, Iizuka S, Akamatsu K, Mizuhata M, Kajinami A (2001) Novel fabrication method for Si1-xTixO2 thin films with graded composition profiles by liquid phase deposition. J Mater Chem 11:984

    Article  Google Scholar 

  60. Supothina S, De Guire MR, Heuer AH, Niesen TP, Bill J, Aldinger F (1999) Deposition of tin (IV) oxide ceramic films on organic self-assembled monolayers. In: Klein LC, Francis LF, De Guire MR, Mark JE (eds) Organic-inorganic hybrid materials II, vol 576. Materials Research Society, Warrendale, PA, p 203

    Google Scholar 

  61. Bayer A, Boyle DS, Heinrich MR, O’Brien P, Otway DJ, Robbe O (2000) Developing environmentally benign routes for semiconductor synthesis: improved approaches to the solution deposition of cadmium sulfide for solar cell applications. Green Chem 2:79

    Article  Google Scholar 

  62. Boyle DS, Bayer A, Heinrich MR, Robbe O, O’Brien P (2000) Novel approach to the chemical bath deposition of chalcogenide semiconductors. Thin Solid Films 150:361–362

    Google Scholar 

  63. De Guire MR, Bayless D (2010) Sulfur tolerance and improved performance in SOFCs for aerospace applications. Final Technical Report for NASA Contract NNC06CA46C

    Google Scholar 

  64. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, San Diego

    Google Scholar 

  65. Shin H, Wang Y, Sampathkumaran U, De Guire MR, Heuer AH, Sukenik CN (1999) Pyrolysis of self-assembled monolayers on inorganic substrates. J Mater Res 14:2116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. De Guire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Guire, M.R.D., Bauermann, L.P., Parikh, H., Bill, J. (2013). Chemical Bath Deposition. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_14

Download citation

Publish with us

Policies and ethics