Skip to main content

Advances in imaging low-grade gliomas

  • Chapter
Low-Grade Gliomas

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 35))

Abstract

Imaging plays a key role in the management of low-grade gliomas. The traditional view of these tumours as non-enhancing areas of increased signal on T2-weighted imaging is now accepted as being incorrect. Using new MR and PET techniques that can probe the pathological changes with in these tumours by assessing vascularity (perfusion MR), cellularity and infiltration (diffusion weighted and diffusion tensor MR), metabolism (MR spectroscopy and FDG PET) and proliferation (MR spectroscopy, methionine PET and 18Ffluorothymidine FLT PET). These tools will allow improvements in tumour grading, biopsy/therapy guidance and earlier assessment of the response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Okaili RN, Krejza J, Woo JH, Wolf RL, O’Rourke DM, Judy KD, et al. (2007) Intraaxial brain masses: MR imaging-based diagnostic strategy — initial experience. Radiology 243(2): 539–50

    PubMed  Google Scholar 

  2. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, et al. (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62(6): 1074–78

    PubMed  CAS  Google Scholar 

  3. Alimenti A, Delavelle J, Lazeyras F, Yilmaz H, Dietrich PY, de TN, et al. (2007) Monovoxel 1H magnetic resonance spectroscopy in the progression of gliomas. Eur Neurol 58(4): 198–209

    PubMed  Google Scholar 

  4. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191(1): 41–51

    PubMed  CAS  Google Scholar 

  5. Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, Hsu DW, et al. (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 6(6): 2189–200

    PubMed  CAS  Google Scholar 

  6. Astrakas LG, Zurakowski D, Tzika AA, Zarifi MK, Anthony DC, De GU, et al. (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10(24): 8220–28

    PubMed  CAS  Google Scholar 

  7. Beppu T, Inoue T, Shibata Y, Kurose A, Arai H, Ogasawara K, et al. (2003) Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumours. J Neurooncol 63: 109–16

    PubMed  Google Scholar 

  8. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34(4): 555–66

    PubMed  CAS  Google Scholar 

  9. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27(4): 859–67

    PubMed  CAS  Google Scholar 

  10. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15H20. J Nucl Med 45(11): 1851–59

    PubMed  Google Scholar 

  11. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15H20. J Nucl Med 45(11): 1851–59

    PubMed  Google Scholar 

  12. Bulakbasi N, Kocaoglu M, Ors F, Tayfun C, Ucoz T (2003) Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. Am J Neuroradiol 24(2): 225–33

    PubMed  Google Scholar 

  13. Butteriss DJ, Ismail A, Ellison DW, Birchall D (2003) Use of serial proton magnetic resonance spectroscopy to differentiate low-grade glioma from tumefactive plaque in a patient with multiple sclerosis. Br J Radiol 76(909): 662–65

    PubMed  CAS  Google Scholar 

  14. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90(19): 1473–79

    PubMed  CAS  Google Scholar 

  15. Callot V, Galanaud D, Figarella-Branger D, Lefur Y, Metellus P, Nicoli F, et al. (2007) Correlations between MR and endothelial hyperplasia in low-grade gliomas. J Magn Reson Imaging 26(1): 52–60

    PubMed  Google Scholar 

  16. Cha S, Tihan T, Crawford F, Fischbein NJ, Chang S, Bollen A, et al. (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol 26(2): 266–73

    PubMed  Google Scholar 

  17. Chamberlain MC, Murovic JA, Levin VA (1988) Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 38(9): 1371–74

    PubMed  CAS  Google Scholar 

  18. Chan YL, Leung SF, King AD, Choi PH, Metreweli C (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213(3): 800–07

    PubMed  CAS  Google Scholar 

  19. Chan YL, Yeung DK, Leung SF, Cao G (1999) Proton magnetic resonance spectroscopy of late delayed radiation-induced injury of the brain. J Magn Reson Imaging 10(2): 130–37

    PubMed  CAS  Google Scholar 

  20. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3): 191–97

    PubMed  CAS  Google Scholar 

  21. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6): 945–52

    PubMed  CAS  Google Scholar 

  22. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. (2005) [18F]3-deoxy-3-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32(6): 653–59

    PubMed  Google Scholar 

  23. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo-or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29(2): 176–82

    PubMed  CAS  Google Scholar 

  24. Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Brasil CG, Tofts PS, et al. (2008) Lowgrade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247(1): 170–78

    PubMed  Google Scholar 

  25. Daumas-Duport C, Tucker ML, Kolles H, Cervera P, Beuvon F, Varlet P, et al. (1997) Oligodendrogliomas. Part II: A new grading system based on morphological and imaging criteria. J Neurooncol 34(1): 61–78

    PubMed  CAS  Google Scholar 

  26. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95(5): 746–50

    PubMed  Google Scholar 

  27. De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr, et al. (1996) Prognostic value positron emission tomography with [18F] fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39(3): 470–76

    PubMed  Google Scholar 

  28. Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, et al. (1990) Gliomas: classification with MR imaging. Radiology 174(2): 411–15

    PubMed  CAS  Google Scholar 

  29. Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, et al. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195(1): 47–52

    PubMed  CAS  Google Scholar 

  30. Derlon JM, Chapon F, Noel MH, Khouri S, Benali K, Petit-Taboue MC, et al. (2000) Noninvasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27(7): 778–87

    PubMed  CAS  Google Scholar 

  31. Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, et al. (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40(2): 276–87

    PubMed  CAS  Google Scholar 

  32. Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, et al. (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. Am J Roentgenol 150(1): 189–97

    Google Scholar 

  33. Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, et al. (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43(6): 845–53

    PubMed  CAS  Google Scholar 

  34. Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, et al. (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43(6): 845–53

    PubMed  CAS  Google Scholar 

  35. Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, et al. (1999) 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59(3): 615–21

    PubMed  CAS  Google Scholar 

  36. Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, et al. (2008) Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 247(3): 808–17

    PubMed  Google Scholar 

  37. Fayed N, Modrego PJ (2005) The contribution of magnetic resonance spectroscopy and echoplanar perfusion-weighted MRI in the initial assessment of brain tumours. J Neurooncol 72(3): 261–65

    PubMed  Google Scholar 

  38. Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. (2007) Prognostic value of O-(2-18F-Fluoroethyl)-L-Tyrosine PET and MRI in low-grade glioma. J Nucl Med 48(4): 519–27

    PubMed  CAS  Google Scholar 

  39. Fox IH, Kelley WN (1978) The role of adenosine and 2′-deoxyadenosine in mammalian cells. Annu Rev Biochem 47: 655–86

    PubMed  CAS  Google Scholar 

  40. Gauvain KM, McKinstry RC, Mukherjee P, Perry A, Neil JJ, Kaufman BA, et al. (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. Am J Roentgenol 177(2): 449–54

    CAS  Google Scholar 

  41. Giammarile F, Cinotti LE, Jouvet A, Ramackers JM, Saint PG, Thiesse P, et al. (2004) High and low grade oligodendrogliomas (ODG): correlation of amino-acid and glucose uptakes using PET and histological classifications. J Neurooncol 68(3): 263–74

    PubMed  CAS  Google Scholar 

  42. Go KG, Keuter EJ, Kamman RL, Pruim J, Metzemaekers JD, Staal MJ, et al. (1994) Contribution of magnetic resonance spectroscopic imaging and L-[1-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34(6): 994–1002

    PubMed  CAS  Google Scholar 

  43. Goebell E, Paustenbach S, Vaeterlein O, Ding XQ, Heese O, Fiehler J, et al. (2006) Lowgrade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239(1): 217–22

    PubMed  Google Scholar 

  44. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, et al. (1996) Regional glucose metabolism and histopathology of gliomas: a study based on positron emission tomography-guided biopsy. Cancer 78: 1098–1106

    PubMed  CAS  Google Scholar 

  45. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA (2004) Metabolism of 30-deoxy-30-[F-18] fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol 31(7): 829–37

    PubMed  CAS  Google Scholar 

  46. Guillevin R, Menuel C, Duffau H, Kujas M, Capelle L, Aubert A, et al. (2008) Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neurooncol 87(2): 181–87

    PubMed  CAS  Google Scholar 

  47. Hara T, Kondo T, Hara T, Kosaka N (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99(3): 474–79

    PubMed  Google Scholar 

  48. Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: Tumor recurrence versus radiation injury. Am J Neuroradiol 25(2): 201–09

    PubMed  Google Scholar 

  49. Heiss WD, Heindel W, Herholz K, Rudolf J, Bunke J, Jeske J, et al. (1990) Positron emission tomography of fluorine-18-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors. J Nucl Med 31(3): 302–10

    PubMed  CAS  Google Scholar 

  50. Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, et al. (1998) 11Cmethionine PET for differential diagnosis of low-grade gliomas. Neurology 50(5): 1316–22

    PubMed  CAS  Google Scholar 

  51. Herminghaus S, Dierks T, Pilatus U, Moller-Hartmann W, Wittsack J, Marquardt G, et al. (2003) Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. J Neurosurg 98(1): 74–81

    PubMed  Google Scholar 

  52. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107(3): 174–80

    PubMed  Google Scholar 

  53. Isselbacher KJ (1972) Sugar and amino acid transport by cells in culture — differences between normal and malignant cells. N Engl J Med 286(17): 929–33

    PubMed  CAS  Google Scholar 

  54. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, et al. (2005) 18F-Fluoro-L-Thymidine and 11C-Methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12): 1948–58

    PubMed  CAS  Google Scholar 

  55. Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C (2006) Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain 129(Pt 7): 1884–91

    PubMed  Google Scholar 

  56. Jenkinson MD, Smith TS, Brodbelt AR, Joyce KA, Warnke PC, Walker C (2007) Apparent diffusion coefficients in oligodendroglial tumors characterized by genotype. J Magn Reson Imaging 26(6): 1405–12

    PubMed  Google Scholar 

  57. Jenkinson MD, Smith TS, Joyce K, Fildes D, du Plessis DG, Warnke PC, et al. (2005) MRS of oligodendroglial tumors: correlation with histopathology and genetic subtypes. Neurology 64(12): 2085–89

    PubMed  CAS  Google Scholar 

  58. Jenkinson MD, Smith TS, Joyce KA, Fildes D, Broome J, du Plessis DG, et al. (2006) Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology 48(10): 703–13

    PubMed  Google Scholar 

  59. Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, et al. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1): 52–59

    PubMed  CAS  Google Scholar 

  60. Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, et al. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1): 52–59

    PubMed  CAS  Google Scholar 

  61. Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, France

    Google Scholar 

  62. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, et al. (1999) Glial neoplasms: dynamic contrast-enhanced T2 *-weighted MR imaging. Radiology 211(3): 791–98

    PubMed  CAS  Google Scholar 

  63. Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 79(4): 533–36

    PubMed  CAS  Google Scholar 

  64. Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D, et al. (1992) Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 36(4): 808–18

    PubMed  CAS  Google Scholar 

  65. Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, et al. (2001) The role of diffusion-weighted imaging in patients with brain tumors. Am J Neuroradiol 22(6): 1081–88

    PubMed  CAS  Google Scholar 

  66. Kuwert T, Probst-Cousin S, Woesler B, Morgenroth C, Lerch H, Matheja P, et al. (1997) Iodine-123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 38(10): 1551–55

    PubMed  CAS  Google Scholar 

  67. Lam WW, Poon WS, Metreweli C (2002) Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol 57(3): 219–25

    PubMed  CAS  Google Scholar 

  68. Law M, Brodsky JE, Babb J, Rosenblum M, Miller DC, Zagzag D, et al. (2007) High cerebral blood volume in human gliomas predicts deletion of chromosome 1p: preliminary results of molecular studies in gliomas with elevated perfusion. J Magn Reson Imaging 25(6): 1113–19

    PubMed  Google Scholar 

  69. Law M, Oh S, Johnson G, Babb JS, Zagzag D, Golfinos J, et al. (2006) Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 58(6): 1099–1107

    PubMed  Google Scholar 

  70. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25(5): 746–55

    PubMed  Google Scholar 

  71. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24(10): 1989–98

    PubMed  Google Scholar 

  72. Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am J Neuroradiol 28(4): 761–66

    PubMed  CAS  Google Scholar 

  73. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2): 490–98

    PubMed  Google Scholar 

  74. Lee YY, Van TP (1989) Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. Am J Roentgenol 152(2): 361–69

    CAS  Google Scholar 

  75. Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR, et al. (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol 25(2): 214–21

    PubMed  Google Scholar 

  76. Levivier M, Goldman S, Pirotte B, Brucher JM, Baleriaux D, Luxen A, et al. (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F] fluorodeoxyglucose. J Neurosurg 82(3): 445–52

    PubMed  CAS  Google Scholar 

  77. Maia AC, Malheiros SM, da Rocha AJ, da Silva CJ, Gabbai AA, Ferraz FA, et al. (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. Am J Neuroradiol 26(4): 777–83

    PubMed  Google Scholar 

  78. Maia AC, Malheiros SM, da Rocha AJ, Stavale JN, Guimaraes IF, Borges LR, et al. (2004) Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg 101(6): 970–76

    PubMed  Google Scholar 

  79. Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ (2002) Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 15(1): 18–27

    PubMed  CAS  Google Scholar 

  80. Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, et al. (2003) Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 53(4): 524–28

    PubMed  Google Scholar 

  81. Massager N, David P, Goldman S, Pirotte B, Wikler D, Salmon I, et al. (2000) Combined magnetic resonance imaging-and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J Neurosurg 93(6): 951–57

    PubMed  CAS  Google Scholar 

  82. Massoud TF, Singh A, Gambhir SS (2008) Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. Am J Neuroradiol 29(2): 229–34

    PubMed  CAS  Google Scholar 

  83. Massoud TF, Singh A, Gambhir SS (2008) Noninvasive molecular neuroimaging using reporter genes. Part II: Experimental, current, and future applications. Am J Neuroradiol 29(3): 409–18

    PubMed  CAS  Google Scholar 

  84. McBride DQ, Miller BL, Nikas DL, Buchthal S, Chang L, Chiang F, et al. (1995) Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol 44(2): 137–44

    PubMed  CAS  Google Scholar 

  85. . McKnight TR, dem Bussche MH, Vigneron DB, Lu Y, Berger MS, McDermott MW, et al. (2002) Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 97(4): 794–802

    PubMed  Google Scholar 

  86. McKnight TR, Lamborn KR, Love TD, Berger MS, Chang S, Dillon WP, et al. (2007) Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg 106(4): 660–66

    PubMed  CAS  Google Scholar 

  87. Megyesi JF, Kachur E, Lee DH, Zlatescu MC, Betensky RA, Forsyth PA, et al. (2004) Imaging correlates of molecular signatures in oligodendrogliomas. Clin Cancer Res 10(13): 4303–06

    PubMed  Google Scholar 

  88. Meyerand ME, Pipas JM, Mamourian A, Tosteson TD, Dunn JF (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. Am J Neuroradiol 20(1): 117–23

    PubMed  CAS  Google Scholar 

  89. Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Uemura K (1996) Long-term positron emission tomography evaluation of slowly progressive gliomas. Eur J Cancer 32A(7): 1257–60

    PubMed  CAS  Google Scholar 

  90. Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, et al. (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44(5): 371–81

    PubMed  CAS  Google Scholar 

  91. Moritani T, Ekholm S, Westesson P-L, Hiwatashi A (2005) Brain neoplasms. In: Moritani T, Ekholm S, Westesson P-L (eds)Diffusion-weighted MR imaging of the brain. Springer, Berlin Heidelberg, pp 161–80

    Google Scholar 

  92. Munch-Petersen B, Cloos L, Tyrsted G, Eriksson S (1991) Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem 266(14): 9032–38

    PubMed  CAS  Google Scholar 

  93. Murphy M, Loosemore A, Clifton AG, Howe FA, Tate AR, Cudlip SA, et al. (2002) The contribution of proton magnetic resonance spectroscopy (1H MRS) to clinical brain tumour diagnosis. Br J Neurosurg 16(4): 329–34

    PubMed  CAS  Google Scholar 

  94. Murphy PS, Viviers L, Abson C, Rowland IJ, Brada M, Leach MO, et al. (2004) Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br J Cancer 90(4): 781–86

    PubMed  CAS  Google Scholar 

  95. Muti M, Aprile I, Principi M, Italiani M, Guiducci A, Giulianelli G, et al. (2002) Study on the variations of the apparent diffusion coefficient in areas of solid tumor in high-grade gliomas. Magn Reson Imaging 20(9): 635–41

    PubMed  CAS  Google Scholar 

  96. Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46(2): 274–82

    PubMed  CAS  Google Scholar 

  97. Nafe R, Herminghaus S, Raab P, Wagner S, Pilatus U, Schneider B, et al. (2003) Preoperative proton-MR spectroscopy of gliomas — correlation with quantitative nuclear morphology in surgical specimen. J Neurooncol 63(3): 233–45

    PubMed  Google Scholar 

  98. Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, et al. (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84(3): 449–58

    PubMed  CAS  Google Scholar 

  99. Nuutinen J, Sonninen P, Lehikoinen P, Sutinen E, Valavaara R, Eronen E, et al. (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48(1): 43–52

    PubMed  CAS  Google Scholar 

  100. Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, et al. (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. Am J Neuroradiol 17(2): 345–53

    PubMed  CAS  Google Scholar 

  101. Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, et al. (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186(1): 45–53

    PubMed  CAS  Google Scholar 

  102. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17(4): 861–72

    PubMed  Google Scholar 

  103. Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, et al. (2006) Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization Grade II gliomas. Ann Neurol 60(3): 380–83

    PubMed  Google Scholar 

  104. Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Di Chiro G (1983) Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. Am J Neuroradiol 4(3): 533–35

    PubMed  CAS  Google Scholar 

  105. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, et al. (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62(6): 816–22

    PubMed  CAS  Google Scholar 

  106. Pena A, Green HAL, Carpenter TA, Price SJ, Pickard JD, Gillard JH (2006) Enhanced visualization and quantification of magnetic resonance diffusion tensor imaging using the p:q tensor decomposition. Br J Radiol 79(938): 101–09

    PubMed  CAS  Google Scholar 

  107. Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, et al. (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104(2): 238–53

    PubMed  Google Scholar 

  108. Pirotte B, Goldman S, Massager N, David P, Wikler D, Lipszyc M, et al. (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomographyguided stereotactic brain biopsies. J Neurosurg 101(3): 476–83

    PubMed  CAS  Google Scholar 

  109. Pirotte B, Goldman S, Salzberg S, Wikler D, David P, Vandesteene A, et al. (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38(3): 146–55

    PubMed  Google Scholar 

  110. Price SJ (2007) The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg 21(6): 562–75

    PubMed  Google Scholar 

  111. Price SJ, Burnet NG, Donovan T, Green HA, Pena A, Antoun NM, et al. (2003) Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol 58(6): 455–62

    PubMed  CAS  Google Scholar 

  112. Price SJ, Fryer TD, Cleij MC, Dean AF, Joseph J, Salvador R, et al. (2008) Imaging regional variation of cellular proliferation in gliomas using 3′-deoxy-3′-[18F] fluorothymidine positron-emission tomography: an image-guided biopsy study. Clin Radiol [Epub ahead of print]:-doi:10.1016/j.crad.2008.01.016

    Google Scholar 

  113. Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Pena A, et al. (2006) Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradiol 27(9): 1969–74

    PubMed  CAS  Google Scholar 

  114. Price SJ, Pena A, Burnet NG, Jena R, Green HA, Carpenter TA, et al. (2004) Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur Radiol 14(10): 1909–17

    PubMed  Google Scholar 

  115. Recht LD, Lew R, Smith TW (1992) Suspected low-grade glioma: is deferring treatment safe? Ann Neurol 31(4): 431–36

    PubMed  CAS  Google Scholar 

  116. Reijneveld JC, van der GJ, Ramos LM, Bromberg JE, Taphoorn MJ (2005) Proton MRS imaging in the follow-up of patients with suspected low-grade gliomas. Neuroradiology 47(12): 887–91

    PubMed  CAS  Google Scholar 

  117. Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, et al. (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92(6): 1541–49

    PubMed  CAS  Google Scholar 

  118. Ribom D, Smits A (2005) Baseline 11C-methionine PET reflects the natural course of grade 2 oligodendrogliomas. Neurol Res 27(5): 516–21

    PubMed  Google Scholar 

  119. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al. (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51(4): 912–20

    PubMed  Google Scholar 

  120. Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, et al. (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54(5): 1111–19

    PubMed  Google Scholar 

  121. Roelcke U, von Ammon K, Hausmann O, Kaech DL, Vanloffeld W, Landolt H, et al. (1999) Operated low grade astrocytomas: a long term PET study on the effect of radiotherapy. J Neurol Neurosurg Psychiatry 66(5): 644–47

    PubMed  CAS  Google Scholar 

  122. Saga T, Kawashima H, Araki N, Takahashi JA, Nakashima Y, Higashi T, et al. (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31(12): 774–80

    PubMed  Google Scholar 

  123. Scott JN, Brasher PMA, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59(6): 947–49

    PubMed  CAS  Google Scholar 

  124. Setzer M, Herminghaus S, Marquardt G, Tews DS, Pilatus U, Seifert V, et al. (2007) Diagnostic impact of proton MR-spectroscopy versus image-guided stereotactic biopsy. Acta Neurochir (Wien) 149(4): 379–86

    CAS  Google Scholar 

  125. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. (1998) Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nat Med 4(11): 1334–36

    PubMed  CAS  Google Scholar 

  126. Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi CG, et al. (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179(3): 783–89

    Google Scholar 

  127. Sijens PE, Heesters MA, Enting RH, van der Graaf WT, Potze JH, Irwan R, et al. (2007) Diffusion tensor imaging and chemical shift imaging assessment of heterogeneity in lowgrade glioma under temozolomide chemotherapy. Cancer Invest 25(8): 706–710

    PubMed  CAS  Google Scholar 

  128. Sijens PE, Oudkerk M (2002) 1H chemical shift imaging characterization of human brain tumor and edema. Eur Radiol 12(8): 2056–61

    PubMed  Google Scholar 

  129. Spampinato MV, Smith JK, Kwock L, Ewend M, Grimme JD, Camacho DL, et al. (2007) Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. Am J Roentgenol 188(1): 204–12

    Google Scholar 

  130. Stockhammer F, Thomale UW, Plotkin M, Hartmann C, Von DA (2007) Association between fluorine-18-labeled fluorodeoxyglucose uptake and 1p and 19q loss of heterozygosity in World Health Organization Grade II gliomas. J Neurosurg 106(4): 633–37

    PubMed  CAS  Google Scholar 

  131. Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, et al. (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 171(6): 1479–86

    CAS  Google Scholar 

  132. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1): 53–60

    PubMed  CAS  Google Scholar 

  133. Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. Am J Neuroradiol 22(7): 1306–15

    PubMed  CAS  Google Scholar 

  134. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21(5): 901–09

    PubMed  CAS  Google Scholar 

  135. Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, et al. (2006) Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging 24(9): 1131–42

    PubMed  CAS  Google Scholar 

  136. Tamura M, Shibasaki T, Zama A, Kurihara H, Horikoshi S, Ono N, et al. (1998) Assessment of malignancy of glioma by positron emission tomography with 18F-fluorodeoxyglucose and single photon emission computed tomography with thallium-201 chloride. Neuroradiology 40(4): 210–15

    PubMed  CAS  Google Scholar 

  137. Tate AR, Underwood J, Acosta DM, Julia-Sape M, Majos C, Moreno-Torres A, et al. (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4): 411–34

    PubMed  CAS  Google Scholar 

  138. Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, et al. (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87(4): 516–24

    PubMed  CAS  Google Scholar 

  139. Thiel A, Pietrzyk U, Sturm V, Herholz K, Hovels M, Schroder R (2000) Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic resonance imaging coregistration: technical case report. Neurosurgery 46(1): 232–34

    PubMed  CAS  Google Scholar 

  140. Tofts PS, Benton CE, Weil RS, Tozer DJ, Altmann DR, Jager HR, et al. (2007) Quantitative analysis of whole-tumor Gd enhancement histograms predicts malignant transformation in low-grade gliomas. J Magn Reson Imaging 25(1): 208–14

    PubMed  Google Scholar 

  141. Tozer DJ, Jager HR, Danchaivijitr N, Benton CE, Tofts PS, Rees JH, et al. (2007) Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed 20(1): 49–57

    PubMed  Google Scholar 

  142. Tsuchida T, Takeuchi H, Okazawa H, Tsujikawa T, Fujibayashi Y (2008) Grading of brain glioma with 1-11C-acetate PET: comparison with 18F-FDG PET. Nucl Med Biol 35(2): 171–76

    PubMed  CAS  Google Scholar 

  143. Tsui EY, Chan JH, Leung TW, Yuen MK, Cheung YK, Luk SH, et al. (2000) Radionecrosis of the temporal lobe: dynamic susceptibility contrast MRI. Neuroradiology 42(2): 149–52

    PubMed  CAS  Google Scholar 

  144. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33(12): 2133–37

    PubMed  CAS  Google Scholar 

  145. Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, et al. (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32(1): 39–51

    Google Scholar 

  146. Vuori K, Kankaanranta L, Hakkinen AM, Gaily E, Valanne L, Granstrom ML, et al. (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230(3): 703–08

    PubMed  Google Scholar 

  147. Warburg O (1956) On the origin of cancer cells. Science 123(3191): 309–14

    Google Scholar 

  148. White ML, Zhang Y, Kirby P, Ryken TC (2005) Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas? Am J Neuroradiol 26(4): 784–90

    PubMed  Google Scholar 

  149. Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J, et al. (2009) Noninvasive detection of therapeutic cytolytic Tcells with 18F-FHBG PET in a patient with glioma. Nat Clin Prac Oncol 6(1): 53–58

    CAS  Google Scholar 

  150. Yamamoto Y, Nishiyama Y, Kimura N, Kameyama R, Kawai N, Hatakeyama T, et al. (2008) (11)C-Acetate PET in the evaluation of brain glioma: comparison with (11)C-Methionine and (18)F-FDG-PET. Mol Imaging Biol, Jun 10 [Epub ahead of print]

    Google Scholar 

  151. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28 (2): 117–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Schramm

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Price, S.J. (2010). Advances in imaging low-grade gliomas. In: Schramm, J. (eds) Low-Grade Gliomas. Advances and Technical Standards in Neurosurgery, vol 35. Springer, Vienna. https://doi.org/10.1007/978-3-211-99481-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99481-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99480-1

  • Online ISBN: 978-3-211-99481-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics