Skip to main content

Compression, Complements and the 3k−4 Theorem

  • Chapter
Structural Additive Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 30))

  • 1223 Accesses

Abstract

We have seen (from Kneser’s Theorem) that if |A+B|<|A|+|B|−1, then A+B must be periodic, which may be viewed as a partial structural description of A+B. In this chapter, we will prove a more precise structure theorem describing \(A,\,B\subseteq \mathbb{Z}\) with

$$|A+B|\leq |A|+|B|-3+\min\{|B|-\delta(A,B),\,|A|-\delta(B,A)\}, $$

where

$$\delta(A,B)=\left\{ \begin{array}{ll} 1 & \mbox{if } x+A\subseteq B \mbox{ for some } x\in \mathbb{Z}\mbox{,} \\ 0 & \mbox{otherwise,} \end{array} \right. $$

which shows that subsets of very small sumset in \(\mathbb{Z}\) must be large subsets of a pair of arithmetic progressions with common difference and their sumset must contain a large arithmetic progression of this same difference. Along the way, we will introduce the notion of relative complements and dual pairs, which we will need later in the course. Compression techniques and the related method of modular reduction will be developed in very general form and (as a simple example of compression techniques) we will derive a discrete Brunn-Minkowski Theorem in dimension 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Bardaji, D.J. Grynkiewicz, Long arithmetic progressions in small sumsets. Integers 10 (2010) (electronic)

    Google Scholar 

  2. Y. Bilu, Structure of sets with small sumset, in Structure Theory of Set Addition. Astérisque 258, 77–108 (1999)

    MathSciNet  Google Scholar 

  3. M. Chang, A polynomial bound in Freiman’s Theorem. Duke Math. J. 113(3), 399–419 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Deshouillers, V. Lev, A refined bound for sum-free sets in groups of prime order. Bull. Lond. Math. Soc. 40(5), 863–875 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.A. Freiman, The addition of finite sets I. Izv. Vysš. Učebn. Zaved., Mat. 6(13), 202–213 (1959)

    MathSciNet  Google Scholar 

  6. G.A. Freiman, Inverse problems of additive number theory IV: On the addition of finite sets II. Elabuž. Gos. Ped. Inst. Učen. Zap. 8, 72–116 (1960)

    Google Scholar 

  7. G.A. Freiman, Inverse problems of additive number theory VI: On the addition of finite sets III. Izv. Vysš. Učebn. Zaved., Mat. 28(3), 151–157 (1962)

    MathSciNet  Google Scholar 

  8. G.A. Freiman, Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs, vol. 37 (Am. Math. Soc., Providence, 1973)

    MATH  Google Scholar 

  9. G.A. Freiman, On the detailed structure of sets with small additive property, in Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics CRM Barcelona (Birkhäuser, Basel, 2009), pp. 233–239

    Chapter  Google Scholar 

  10. R.J. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355–405 (2002)

    Article  MATH  Google Scholar 

  11. R.J. Gardner, P. Gronchi, A Brunn–Minkowski inequality for the integer lattice. Trans. Am. Math. Soc. 353(10), 3995–4024 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Green, I.Z. Ruzsa, Freiman’s Theorem in an arbitrary abelian group. J. Lond. Math. Soc. 75(1), 163–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. D.J. Grynkiewicz, A step beyond Kemperman’s structure theorem. Mathematika 55, 67–114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.J. Grynkiewicz, O. Serra, Properties of two dimensional sets with small sumset. J. Comb. Theory, Ser. A 117(2), 164–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.J. Grynkiewicz, O. Serra, The Freiman 3k−2 theorem: Distinct summands. Manuscript

    Google Scholar 

  16. S.-G. Guo, Y.-G. Chen, Blocks of consecutive integers in sumsets (A+B)t. Bull. Aust. Math. Soc. 70(2), 283–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y.O. Hamidoune, A. Plagne, A multiple set version of the 3k−3 theorem. Rev. Mat. Iberoam. 21(1), 133–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Jin, Freiman’s inverse problem with small doubling property. Adv. Math. 216(2), 711–752 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Lev, Structure theorem for multiple addition and the Frobenius problem. J. Number Theory 58(1), 79–88 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Lev, Addendum to: “Structure theorem for multiple addition and the Frobenius problem”. J. Number Theory 65(1), 96–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Lev, Optimal representations by sumsets and subset sums. J. Number Theory 62, 127–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Lev, Large sum-free sets in \(\mathbb{Z}/p\mathbb{Z}\). Isr. J. Math. 154, 221–233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Lev, P.Y. Smeliansky, On addition of two distinct sets of integers. Acta Arith. 70(1), 85–91 (1995)

    MathSciNet  MATH  Google Scholar 

  24. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets (Springer, Harrisonburg, 1996)

    Book  MATH  Google Scholar 

  25. Y. Stanchescu, On addition of two distinct sets of integers. Acta Arith. 75(2), 191–194 (1996)

    MathSciNet  Google Scholar 

  26. T. Tao, V. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  27. A.G. Vosper, The critical pairs of subsets of a group of prime order. J. Lond. Math. Soc. 31, 200–205 (1956)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grynkiewicz, D.J. (2013). Compression, Complements and the 3k−4 Theorem. In: Structural Additive Theory. Developments in Mathematics, vol 30. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00416-7_7

Download citation

Publish with us

Policies and ethics