Skip to main content

Abstract

Modeling protein interactions as complex networks allow applying graph theory to help understanding their topology, to validate previous evidences and to uncover new biological associations. Topological properties have been recognized by their contribution for the understanding of the structures, functional relationships and evolution of complex networks, helping in a better comprehension of the diseases mechanisms and in the identification of drug targets. The human interactome, i.e. the network formed by all protein-protein interactions, is a complex and yet unknown system.

In this paper we present the results of a study about the topological properties of the oral protein network. We evaluate several confidence scores and prediction methods, in order to compare these networks with random organizations with the same size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barabási, A., Oltvai, Z.N.: Network Biology: Understanding the Cell’s Functional Organization. Nature Reviews Genetics 5, 101–113 (2004)

    Article  Google Scholar 

  3. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46(5), 323–351 (2005)

    Article  Google Scholar 

  4. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law Distributions in Empirical Data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., Soldatos, T.G., Kossida, S., Aerts, J., Schneider, R., Bagos, P.G.: Using Graph Theory to Analyze Biological Networks. BioData Mining 4, 10 (2011)

    Article  Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Letters to Nature 393, 440–442 (1998)

    Article  Google Scholar 

  7. Newman, M.E.J.: Random Graphs as Models of Networks. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks: from the Genome to the Internet, pp. 35–68. Wiley-VCH, Berlin (2003)

    Google Scholar 

  8. Colizza, V., Flammini, A., Maritan, A., Vespignani, A.: Characterization and Modeling of Protein-protein Interaction Networks. Physica A 352, 1–27 (2005)

    Article  Google Scholar 

  9. Wu, D.D., Hu, X.: Mining and Analyzing the Topological Structure of Protein–Protein Interaction Networks. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 185–189 (2006)

    Google Scholar 

  10. Tanaka, R., Yi, T.M., Doyle, J.: Some Protein Interaction Data do not Exhibit Power Law Statistics. Federation of European Biochemical Societies (FEBS) Letters 579, 5140–5144 (2005)

    Article  Google Scholar 

  11. Liu, X.F., Tse, C.K., Small, M.: Complex Network Structure of Musical Compositions: Algorithmic Generation of Appealing Music. Physica A 389, 126–132 (2010)

    Article  Google Scholar 

  12. Shannon, P., Markiel, A., Ozier, O., et al.: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13, 2498–2504 (2003)

    Article  Google Scholar 

  13. Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T., Albrecht, M.: Computing Topological Parameters of Biological Networks. Bioinformatics 24, 282–284 (2008)

    Article  Google Scholar 

  14. Arrais, J.P., Rosa, N., Melo, J., Coelho, E.D., Amaral, D., Correia, M.J., Barros, M., Oliveira, J.L.: OralCard: A bioinformatic tool for the study of oral proteome. Archives of Oral Biology (2013) ISSN 0003-9969

    Google Scholar 

  15. Search Tool for the Retrieval of Interacting Genes, http://string-db.org

  16. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Tobias Doerks, T., Stark, M., Muller, J., Bork, P., Lars, J., Jensen, L.J., Mering, C.: The STRING Da-tabase in 2011: Functional Interaction Networks of Proteins, Globally Integrated and Scored. Nucleic Acids Research 568, D561–D568 (2011)

    Article  Google Scholar 

  17. Dong, J., Horvath, S.: Understanding Network Concepts in Modules. BMC Systems Biology 1 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Barbosa, F.C., Arrais, J.P., Oliveira, J.L. (2013). Quantitative Characterization of Protein Networks of the Oral Cavity. In: Mohamad, M., Nanni, L., Rocha, M., Fdez-Riverola, F. (eds) 7th International Conference on Practical Applications of Computational Biology & Bioinformatics. Advances in Intelligent Systems and Computing, vol 222. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00578-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00578-2_9

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00577-5

  • Online ISBN: 978-3-319-00578-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics