Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 404 Accesses

Abstract

Large surface-to-volume ratios of semiconductor nanocrystals cause susceptibility to charge trapping, which can modify luminescence yields and induce single-particle blinking. Optical spectroscopies cannot differentiate between bulk and surface traps in contrast to spin-resonance techniques, which in principle avail chemical information on such trap sites. Magnetic resonance detection via spin-controlled photoluminescence enables the direct observation of interactions between emissive excitons and trapped charges. This approach allows the discrimination of two functionally different trap states in CdSe/CdS nanocrystals underlying the fluorescence quenching and thus blinking mechanisms: a spin-dependent Auger process in charged particles; and a charge-separated state pair process, which leaves the particle neutral. The paramagnetic trap centers offer control of energy transfer from the wide-gap CdS to the narrow-gap CdSe, i.e. light harvesting within the heterostructure. Coherent spin motion within the trap states of the CdS arms of nanocrystal tetrapods is reflected by spatially remote luminescence from CdSe cores with surprisingly long coherence times of > 300 ns at 3.5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talapin, D.V., Nelson, J.H., Shevchenko, E.V., Aloni, S., Sadtler, B., Alivisatos, A.P.: Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007)

    Article  ADS  Google Scholar 

  2. Ip, A.H., Thon, S.M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., Levina, L., Rollny, L.R., Carey, G.H., Fischer, A., Kemp, K.W., Kramer, I.J., Ning, Z., Labelle, A.J., Chou, K.W., Amassian, A., Sargent, E.H.: Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012)

    Article  ADS  Google Scholar 

  3. Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J., Wang, L.-W., Alivisatos, A.P.: Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004)

    Article  ADS  Google Scholar 

  4. Jones, M., Lo, S.S., Scholes, G.D.: Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. 106(9), 3011–3016 (2009)

    Article  ADS  Google Scholar 

  5. Efros, A.L., Rosen, M.: Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78(6), 1110–1113 (1997)

    Article  ADS  Google Scholar 

  6. Schlegel, G., Bohnenberger, J., Potapova, I., Mews, A.: Fluorescence decay time of single semiconductor nanocrystals. Phys. Rev. Lett. 88(13), 137401 (2002)

    Article  ADS  Google Scholar 

  7. Galland, C., Ghosh, Y., Steinbrück, A., Sykora, M., Hollingsworth, J.a., Klimov, V.I., Htoon, H.: Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479(7372), 203–207 (2011)

    Google Scholar 

  8. Rosen, S., Schwartz, O., Oron, D.: Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger recombination. Phys. Rev. Lett. 104(15), 157404 (2010)

    Article  ADS  Google Scholar 

  9. Zhao, J., Nair, G., Fisher, B.R., Bawendi, M.G.: Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett. 104(15), 157403 (2010)

    Article  ADS  Google Scholar 

  10. Kraus, R.M., Lagoudakis, P.G., Rogach, A.L., Talapin, D.V., Weller, H., Lupton, J.M., Feldmann, J.: Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys. Rev. Lett. 98(1), 017401 (2007)

    Article  ADS  Google Scholar 

  11. Ochsenbein, S.T., Gamelin, D.R.: Quantum oscillations in magnetically doped colloidal nanocrystals. Nat. Nanotechnol. 6(2), 112–115 (2011)

    Article  ADS  Google Scholar 

  12. Crooker, S., Awschalom, D., Baumberg, J., Flack, F., Samarth, N.: Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56(12), 7574–7588 (1997)

    Article  ADS  Google Scholar 

  13. Nirmal, M., Norris, D., Kuno, M., Bawendi, M., Efros, A., Rosen, M.: Observation of the “dark exciton” in CdSe quantum dots. Phys. Rev. Lett. 75(20), 3728–3731 (1995)

    Article  ADS  Google Scholar 

  14. Gupta, J.A., Awschalom, D.D., Efros, A.L., Rodina, A.V.: Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66(12), 125307 (2002)

    Article  ADS  Google Scholar 

  15. Scholes, G.D., Kim, J., Wong, C.Y.: Exciton spin relaxation in quantum dots measured using ultrafast transient polarization grating spectroscopy. Phys. Rev. B 73(19), 195325 (2006)

    Article  ADS  Google Scholar 

  16. Glozman, A., Lifshitz, E.: Optically detected spin and spin-orbital resonance studies of CdSe/CdS core-shell nanocrystals. Mater. Sci. Eng. C 15(1–2), 17–19 (2001)

    Article  Google Scholar 

  17. Gokhberg, K., Glozman, A., Lifshitz, E., Maniv, T., Schlamp, M.C., Alivisatos, P.: Electron (hole) paramagnetic resonance of spherical CdSe nanocrystals. J. Chem. Phys. 117(6), 2909–2913 (2002)

    Article  ADS  Google Scholar 

  18. Lifshitz, E., Glozman, A., Litvin, I.D., Porteanu, H.: Optically detected magnetic resonance studies of the surface/interface properties of II–VI semiconductor quantum dots. J. Phys. Chem. B 104(45), 10449–10461 (2000)

    Article  Google Scholar 

  19. Fradkin, L., Langof, L., Lifshitz, E., Gaponik, N., Rogach, A., Eychmüller, A., Weller, H., Micic, O.I., Nozik, A.J.: A direct measurement of g-factors in II–VI and III–V core-shell nanocrystals. Phys. E 26(1–4), 9–13 (2005)

    Article  Google Scholar 

  20. Merkulov, I.A., Efros, A.L., Rosen, M.: Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65(20), 205309 (2002)

    Article  ADS  Google Scholar 

  21. Efros, A., Rosen, M., Kuno, M., Nirmal, M., Norris, D., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54(7), 4843–4856 (1996)

    Article  ADS  Google Scholar 

  22. Liu, S., Borys, N., Huang, J., Talapin, D., Lupton, J.: Exciton storage in CdSe/CdS tetrapod semiconductor nanocrystals: electric field effects on exciton and multiexciton states. Phys. Rev. B 86(4), 045303 (2012)

    Article  ADS  Google Scholar 

  23. Rocke, C., Zimmermann, S., Wixforth, A., Kotthaus, J., Böhm, G., Weimann, G.: Acoustically driven storage of light in a quantum well. Phys. Rev. Lett. 78(21), 4099–4102 (1997)

    Article  ADS  Google Scholar 

  24. Frantsuzov, P.A., Marcus, R.: Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 72(15), 155321 (2005)

    Article  ADS  Google Scholar 

  25. Gómez-Campos, F.M., Califano, M.: Hole surface trapping in CdSe nanocrystals: dynamics, rate fluctuations, and implications for blinking. Nano Lett. 12(9), 4508–4517 (2012)

    Article  ADS  Google Scholar 

  26. Borys, N.J., Walter, M.J., Huang, J., Talapin, D.V., Lupton, J.M.: The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330, 1371–1374 (2010)

    Article  ADS  Google Scholar 

  27. Müller, J., Lupton, J., Rogach, A., Feldmann, J., Talapin, D., Weller, H.: Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures. Phys. Rev. B 72(20), 205339 (2005)

    Article  ADS  Google Scholar 

  28. Horodyská, P., Němec, P., Sprinzl, D., Malý, P., Gladilin, V.N., Devreese, J.T.: Exciton spin dynamics in spherical CdS quantum dots. Phys. Rev. B 81(4), 045301 (2010)

    Article  ADS  Google Scholar 

  29. McCamey, D.R., Lee, S.-Y., Paik, S.-Y., Lupton, J.M., Boehme, C.: Spin-dependent dynamics of polaron pairs in organic semiconductors. Phys. Rev. B 82(12), 125206 (2010)

    Article  ADS  Google Scholar 

  30. Baker, W., McCamey, D., van Schooten, K., Lupton, J., Boehme, C.: Differentiation between polaron-pair and triplet-exciton polaron spin-dependent mechanisms in organic light-emitting diodes by coherent spin beating. Phys. Rev. B 84(16), 165205 (2011)

    Article  ADS  Google Scholar 

  31. Mauser, C., Da Como, E., Baldauf, J., Rogach, A.L., Huang, J., Talapin, D.V., Feldmann, J.: Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods. Phys. Rev. B 82(8), 081306 (2010)

    Article  ADS  Google Scholar 

  32. Keeble, D.J., Thomsen, E.A., Stavrinadis, A., Samuel, I.D.W., Smith, J.M., Watt, A.A.R.: Paramagnetic point defects and charge carriers in PbS and CdS nanocrystal polymer composites. J. Phys. Chem. C 113(40), 17306–17312 (2009)

    Article  Google Scholar 

  33. Nakaoka, Y., Nosaka, Y.: Electron spin resonance study of radicals produced on irradiated CdS powder. J. Phys. Chem. 99(24), 9893–9897 (1995)

    Article  Google Scholar 

  34. Voznyy, O.: Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands. J. Phys. Chem. C 115, 15927–15932 (2011)

    Article  Google Scholar 

  35. Guyot-Sionnest, P., Wehrenberg, B., Yu, D.: Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J. Chem. Phys. 123(7), 074709 (2005)

    Article  ADS  Google Scholar 

  36. Cooney, R.R., Sewall, S.L., Anderson, K.E.H., Dias, E.A., Kambhampati, P.: Breaking the phonon bottleneck for holes in semiconductor quantum dots. Phys. Rev. Lett. 98(17), 177403 (2007)

    Article  ADS  Google Scholar 

  37. Brunwin, R.F., Cavenett, B.C., Davies, J.J., Nicholls, J.E.: Optically detected donor magnetic resonance in CdS. Solid State Commun. 18(9–10), 1283–1285 (1976)

    Article  ADS  Google Scholar 

  38. Whitaker, K.M., Ochsenbein, S.T., Smith, A.L., Echodu, D.C., Robinson, B.H., Gamelin, D.R.: Hyperfine coupling in colloidal n-type ZnO quantum dots: effects on electron spin relaxation. J. Phys. Chem. C 114(34), 14467–14472 (2010)

    Article  Google Scholar 

  39. Herek, J.L., Wohlleben, W., Cogdell, R.J., Zeidler, D., Motzkus, M.: Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002)

    Article  ADS  Google Scholar 

  40. van Driel, A.F., Nikolaev, I.S., Vergeer, P., Lodahl, P., Vanmaekelbergh, D., Vos, W.L.: Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models. Phys. Rev. B 75(3), 035329 (2007)

    Article  ADS  Google Scholar 

  41. Astashkin, A.V., Schweiger, A.: Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem. Phys. Lett. 174(6), 595–602 (1990)

    Article  ADS  Google Scholar 

  42. Gliesche, A., Michel, C., Rajevac, V., Lips, K., Baranovskii, S.D., Gebhard, F., Boehme, C.: Effect of exchange coupling on coherently controlled spin-dependent transition rates. Phys. Rev. B 77(24), 245206 (2008)

    Article  ADS  Google Scholar 

  43. Herring, T.W., Lee, S.Y., McCamey, D.R., Taylor, P.C., Lips, K., Hu, J., Zhu, F., Madan, A. Boehme, C.: Experimental discrimination of geminate and non-geminate recombination in a-Si:H. Phys. Rev. B 79(19), 195205 (2009)

    Article  ADS  Google Scholar 

  44. Lee, S.-Y., Paik, S.-Y., McCamey, D.R., Yu, J., Burn, P.L., Lupton, J.M., Boehme, C.: Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. J. Am. Chem. Soc. 133(7), 2019–2021 (2011)

    Article  Google Scholar 

  45. Hahn, E.L.: Spin echoes. Phys. Rev. 297(1946), 580–594 (1950)

    Article  ADS  Google Scholar 

  46. Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43(2), 190–200 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Schooten, K. (2013). Spin-Dependent Exciton Quenching and Intrinsic Spin Coherence in CdSe/CdS Nanocrystals. In: Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00590-4_3

Download citation

Publish with us

Policies and ethics