Skip to main content

Reflection Symmetry in Fractional Calculus – Properties and Applications

  • Chapter
Advances in the Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 257))

  • 1250 Accesses

Abstract

In this paper we define Riesz type derivatives symmetric and anti-symmetric w.r.t. the reflection mapping in finite interval [a,b]. Functions determined in [a,b] are split into parts with well determined reflection symmetry properties in a hierarchy of intervals [a m ,b m ],  m ∈ ℕ, concentrated around an arbitrary point. For these parts - called the [J]-projections of function, we prove the representation and integration formulas for the introduced fractional symmetric and anti-symmetric integrals and derivatives. It appears that they can be reduced to operators determined in arbitrarily short subintervals [a m ,b m ]. The future application in the reflection symmetric fractional variational calculus and the generalization of previous results on localization of Euler-Lagrange equations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problem. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287–6303 (2007)

    Article  MATH  Google Scholar 

  3. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simulat. 16(12), 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanackovic, T.M., Konjik, P., Pilipovic, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A: Math. Theor. 41(9), 095201 (2008)

    Article  MathSciNet  Google Scholar 

  5. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo. Cim. B 119(1), 73–79 (2004)

    Google Scholar 

  6. Baleanu, D., Muslish, S.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Physica Scripta 72(2-3), 119–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czech. J. Phys. 56(10-11), 1087–1092 (2006)

    Article  MathSciNet  Google Scholar 

  8. Baleanu, D., Trujillo, J.J.: A new method of finding the fractional Euler-Lagrange and Hamilton equations within fractional Caputo derivatives. Commun. Nonlinear Sci. Numer. Simulat. 15(5), 1111–1115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48(3), 033504 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kilbas, A.A., Srivastawa, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  11. Klimek, M.: Fractional sequential mechanics - models with symmetric fractional derivative. Czech. J. Phys. 51(12), 1348–1354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klimek, M.: Lagrangean and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52(11), 1247–1253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klimek, M.: On Solutions of Linear Fractional Differential Equations of a Variational Type. The Publishing Office of the Czestochowa University of Technology, Czestochowa (2009)

    Google Scholar 

  14. Klimek, M.: Existence-uniqueness result for a certain equation of motion in fractional mechanics. Bull. Pol. Acad. Sci.: Tech. Sciences 58(4), 573–581 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Klimek, M., Lupa, M.: On reflection symmetry in fractional mechanics. Scientific Research of the Institute of Mathematics and Computer Science 10(1), 109–121 (2011), http://www.srimcs.im.pcz.pl

    Google Scholar 

  16. Klimek, M., Lupa, M.: Reflection symmetry properties of generalized fractional derivatives. Scientific Research of the Institute of Mathematics and Computer Science 11(3), 71–80 (2012), http://www.srimcs.im.pcz.pl

    Google Scholar 

  17. Klimek, M., Lupa, M.: Reflection symmetric formulation of generalized fractional variational calculus. Fract. Calc. Appl. Anal. 16(1), 243–261 (2013), dx.doi.org/10.2478/s13540-013-0015-x

    MathSciNet  Google Scholar 

  18. Klimek, M.: On reflection symmetry and its application to the Euler-Lagrange equations in fractional mechanics. Phil. Trans. R. Soc. A 2012145 (to appear, 2013), doi:dx.doi.org/10.1098/rsta.2013.0145

    Google Scholar 

  19. Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14(4), 523–537 (2011)

    MathSciNet  Google Scholar 

  20. Malinowska, A.B., Torres, D.F.M.: Towards a combined fractional mechanics and quantization. Fract. Calc. Appl. Anal. 15(3), 407–417 (2012)

    MathSciNet  Google Scholar 

  21. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. TMA 75(3), 1507–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  23. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach Science Publ., New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Klimek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klimek, M., Lupa, M. (2013). Reflection Symmetry in Fractional Calculus – Properties and Applications. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds) Advances in the Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 257. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00933-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00933-9_18

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00932-2

  • Online ISBN: 978-3-319-00933-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics