Skip to main content

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

  • 814 Accesses

Abstract

There seems to be a strong demand for control schemes that include mechanical design criteria explicitly, e.g. in relation to active structural control during seismic excitation. Reduction of extreme response levels is the main objective, although the resulting decrease of response energy will also serve to prevent fatigue damage accumulation in structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soong, T. T (1988). State-of-the-art review: Active control in civil engineering. Engineering Structures, 10, 74–84.

    Google Scholar 

  2. Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., et al. (1997). Structural control: Past and present. ASCE Journal of Engineering Mechanics, 123, 897–971.

    Article  Google Scholar 

  3. Spencer, B. F. Jr., Suhardjo, J., & Sain, M. K. (1994). Frequency domain optimal control strategies for aseismic protection. Journal of Engineering Mechanics, 120(1), 135–159.

    Google Scholar 

  4. Spencer, B. F. Jr., Timlin, T. L., & Sain, M. K. (1995). Series solution of a class of nonlinear optimal regulators. Journal of Optimization Theory and Applications.

    Google Scholar 

  5. Madsen, H., Krenk, S., & Lind, N. C. (1986). Methods of structural safety. New Jersey: Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  6. Melchers, R. E. (1999). Structural reliability analysis and prediction. Chichester, UK: Wiley

    Google Scholar 

  7. Maybeck, P. S. (1982). Stochastic models, estimation and control, Vol 3, New York: Academic Press.

    Google Scholar 

  8. Fossen, T. I. (2002). Marine control systems. Trondheim, Norway: Marine Cybernetics.

    Google Scholar 

  9. Fuller, C. R., Elliott, S. J., & Nelson, P. A. (1997). Active control of vibration. Academic Press.

    Google Scholar 

  10. Casciati, F., Magonette, G., & Marazzi, F. (2006). Technology of semiactive devices and applications in vibration mitigation. Wiley.

    Google Scholar 

  11. Marti, K. (2008). Stochastic optimization problems, 2nd edition, Berlin-Heidelberg: Springer.

    Google Scholar 

  12. Preumont, A., & Seto, K. (2008). Active control of structures. Wiley.

    Google Scholar 

  13. Preumont, A. (2002). Vibration control of active structures. An introduction (2nd ed.). Dordrecht: Kluwer.

    MATH  Google Scholar 

  14. Wagg, D., & Neild, S. (2010). Nonlinear vibration with control. Dordrecht: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Leira, B.J. (2013). Introduction. In: Optimal Stochastic Control Schemes within a Structural Reliability Framework. SpringerBriefs in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-01405-0_1

Download citation

Publish with us

Policies and ethics