Skip to main content

Abstract

Lattice Quantum Chromodynamics (LQCD) is an algorithmic formulation of QCD, the mathematical model that describes quarks and their interactions. Computations in LQCD are typically very expensive and run on dedicated supercomputers and large computer clusters for many months. In this paper the calculations are performed in one of the clusters for supercomputing of HP-SEE (High-Performance Computing Infrastructure for South East Europe’s Research Communities) project, that is located in Bulgaria (BG HPC). We use parallel computing with FermiQCD software, to determine the static quark-antiquark potential. In LQCD the static quark-antiquark potential can be derived from the Wilson loops. The standard method uses rectangular Wilson loops, while we test volume Wilson loops, using simulations with SU(3) gauge field configuration for different values of coupling constant and for different lattice sizes. The calculations are made for 100 statistically independent configurations, of gauge fields of the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, K.G.: Phys. Rev. D 10, 1445 (1974)

    Google Scholar 

  2. Gupta, R.: Introduction to Lattice QCD. Lectures given at the LXVIII Les Houches Summer “School Probing the Standard Model of Particle Interactions”, July 28-September 5, 150 pages, arXiv:hep-lat/9807028 (1997)

    Google Scholar 

  3. Gattringer, C., Lang, B.C.: Quantum Chromodynamics on the Lattice, 343 pages. Springer (2009) ISBN: 3642018491

    Google Scholar 

  4. Creutz, M.: Quarks, gluons and lattices. Cambridge Univ. Press, Cambridge (1983)

    Google Scholar 

  5. Creutz, M.: Phys. Rev. D 47, 661 (1993)

    Google Scholar 

  6. Schilling, K., Bali, G.S.: Int. J. Mod. Phys. C 4, 1167–1177 (1993)

    Google Scholar 

  7. Deldar, S.: Phys. Rev. D 62, 34509 (2000)

    Google Scholar 

  8. Bali, G.: Phys. Rev. D 62, 114503 (2000)

    Google Scholar 

  9. Parisi, G., Petronzio, R., Rapuano, F.: Phys. Lett. B 128, 418 (1983)

    Google Scholar 

  10. Di Pierro, M.: Matrix Distributed Processing and FermiQCD. In: Proceedings of the Workshop on Advanced Computing and Analysis Techniques, Fermilab, Batavia, IL 60510, October 16-20. Fermi National Accelerator Laboratory, USA (2000) arXiv:hep-lat/0011083

    Google Scholar 

  11. Di Pierro, M.: FermiQCD: A tool kit for parallel lattice QCD applications. Nucl. Phys. B. Proc. Suppl. 106, 1034–1036 (2002) arXiv:hep-lat/0110116

    Google Scholar 

  12. Wilson, K.G.: Confinement of Quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  Google Scholar 

  13. Bernard, C., et al.: MILC Collaboration, Quenched hadron spectroscopy with improved staggered quark action. Phys. Rev. D 58, 014503 (1998)

    Google Scholar 

  14. Kaplan, D.B.: A Method for simulating chiral fermions on the lattice. Phys. Lett. B 288(3), 342–347 (1992)

    MathSciNet  Google Scholar 

  15. http://www.hp-see.eu

  16. Guagnelli, M., Sommer, R., Witti, H.: Precision computation of a low energy reference scale in quenched lattice QCD. Nucl. Phys. B 535, 389–402 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafina Xhako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xhako, D., Zeqirllari, R., Boriçi, A. (2014). Using Parallel Computing to Calculate Static Interquark Potential in LQCD. In: Dulea, M., Karaivanova, A., Oulas, A., Liabotis, I., Stojiljkovic, D., Prnjat, O. (eds) High-Performance Computing Infrastructure for South East Europe's Research Communities. Modeling and Optimization in Science and Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-01520-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01520-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01519-4

  • Online ISBN: 978-3-319-01520-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics