Skip to main content

In-silico Analysis of the Active Cavity of N-Acetylgalactosamine-6-Sulfate Sulfatase in Eight Species

  • Conference paper
Advances in Computational Biology

Abstract

Mucopolysaccharidosis IV A (MPS IV A) is a lysosomal storage disease produced by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which is involved in the catabolism of keratan sulfate and chondroitin-6-sulfate. In the present study we performed a computational analysis of active cavity of GALNS from human and other eight species, as well as their interaction with the natural ligands. The modeled enzymes showed a highly conserved structure, although differences in the sizes of the active cavity and affinity energy for the ligands were observed among the studied GALNS. The results could be associated to the molecular evolution of the catalytic cavity and differences in the complexity of the substrate produced by the species. These results could have a significant impact towards the understanding of the molecular bases of MPS IV A and the development of efficient treatment alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alméciga-Díaz, C.J., et al.: Contribución colombiana al conocimiento de la enfermedad de Morquio. A Imbiomed 34(3), 221–241 (2012)

    Google Scholar 

  2. Tomatsu, S., et al.: Current and emerging treatments and surgical interventions for Morquio A syndrome: a review. Research and Reports in Endocrine Disorders 2, 65–77 (2012)

    Article  Google Scholar 

  3. Hendriksz, C., et al.: A multi-national, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of BMN 110 treatment for mucopolysaccharidosis IVA (Morquio syndrome type A). Molecular Genetics and Metabolism 108, S48 (2013)

    Google Scholar 

  4. Boyd, R.E., et al.: Pharmacological chaperones as therapeutics for lysosomal storage diseases. J. Med. Chem. 56(7), 2705–2725 (2013)

    Article  Google Scholar 

  5. Olarte-Avellaneda, S., et al.: Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme. Molecular Genetics and Metabolism 108(2), 70–71 (2013)

    Article  Google Scholar 

  6. Tamura, K., et al.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10), 2731–2739 (2011)

    Article  Google Scholar 

  7. Rivera-Colon, Y., et al.: The Structure of Human GALNS Reveals the Molecular Basis for Mucopolysaccharidosis IV A. J. Mol. Biol (2012)

    Google Scholar 

  8. Schenk, M., et al.: Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study. Glycoconj J. 26(8), 1029–1045 (2009)

    Article  Google Scholar 

  9. Dundas, J., et al.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34(Web Server issue), W116–W118 (2006)

    Google Scholar 

  10. Ghosh, D.: Human sulfatases: a structural perspective to catalysis. Cell Mol. Life Sci. 64(15), 2013–2022 (2007)

    Article  Google Scholar 

  11. Funderburgh, J.: Keratan Sulfate Biosynthesis. IUBMB Life 54, 187–194 (2002)

    Article  Google Scholar 

  12. Montano, A., et al.: Implications of absence of clinical phenotype on Morquio A mice: Why rodents do not require skeletal keratan sulfate? In: 58th Annual Meeting of the American Society of Human Genetics (ASHG) ABSTRACT 2008, Philadelphia, Pennsylvania (2008)

    Google Scholar 

  13. Tomatsu, S., et al.: Mouse model of N-acetylgalactosamine-6-sulfate sulfatase deficiency (Galns−/−) produced by targeted disruption of the gene defective in Morquio A disease. Hum. Mol. Genet. 12(24), 3349–3358 (2003)

    Article  Google Scholar 

  14. Venn, G., Mason, R.M.: Absence of keratan sulphate from skeletal tissues of mouse and rat. Biochem J. 228(2), 443–450 (1985)

    Google Scholar 

  15. Barry, F.P., et al.: Length variation in the keratan sulfate domain of mammalian aggrecan. Matrix Biol. 14(4), 323–328 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Olarte-Avellaneda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Olarte-Avellaneda, S., Rodríguez-López, A., Alméciga-Díaz, C.J. (2014). In-silico Analysis of the Active Cavity of N-Acetylgalactosamine-6-Sulfate Sulfatase in Eight Species. In: Castillo, L., Cristancho, M., Isaza, G., Pinzón, A., Rodríguez, J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01568-2_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01567-5

  • Online ISBN: 978-3-319-01568-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics