Skip to main content

Some Fundamental Topological Fixed Point Theorems for Set-Valued Maps

  • Chapter
  • First Online:
Topics in Fixed Point Theory

Abstract

This chapter introduces the reader to two of the most fundamental topological fixed point theorems for set-valued maps: the Browder–Ky Fan and the Kakutani–Ky Fan theorems. It provides a concise discussion including motivations, techniques, as well as some most important applications. The exposition is driven by clarity and simplicity. Generality of statements is deliberately sacrificed to the benefit of conceptual significance. Generalizations based on technicalities or artificial definitions which, with little effort, can be reduced to classical settings are set aside, unless they are motivated by convincing applications. Rather, the treatment here is reduced to the classical convex case, which is—we firmly believe—where the essence belongs. The arguments are kept elementary, as to allow the use of this chapter in a first course in topological fixed point theory and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let X be a non-empty convex compact subset of a topological vector space and let A be a subset of X × X disjoint from the diagonal. If for each fixed x ∈ X, the section \(\{y \in X: (x,y) \in A\}\) is convex (or empty) and for each fixed y ∈ X, the section \(\{x \in X: (x,y) \in A\}\) is open in X, then \(\{x_{0}\} \times X \not\subseteq A\) for some x 0 ∈ X. To see the equivalence with the Browder–Ky Fan fixed point theorem, set \(\varPhi (x):=\{ y \in X: (x,y) \in A\}\).

  2. 2.

    A mapping f: X → Y with values in a topological space Y is said to be compact if its image is relatively compact in Y, that is, \(f(X) \subset K\) compact \(\subset Y.\)

  3. 3.

    The terminology “applications de Ky Fan” appeared first in Ben-El-Mechaiekh et al. [11].

  4. 4.

    We have: [A: X ⇉ Y is u.s.c. with closed values and Y is regular ]⇒A has closed graph. Conversely, [A is locally compact and has closed graph] ⇒ A is u.s.c. (with compact values).

  5. 5.

    A set-valued map \(A: X \rightrightarrows Y\) between two topological spaces is said to be lower semicontinuous (l.s.c.) at x 0 ∈ X if for any open subset V of Y such that \(V \cap A(x_{0})\neq \varnothing,\) the upper inverse set \({A}^{-}(V ) =\{ x \in X: A(x) \cap V \neq \varnothing \}\) is an open subset of X containing x 0. A is said to be l.s.c. on X if it is l.s.c. at every point of X. Also, lower semicontinuity coincides with continuity for single-valued mappings.

  6. 6.

    Clearly, if the map is u. s. c. on X in the ordinary sense, then it is \(\mathcal{V}\)-u. s. c on X. The converse holds true in the case where Φ is compact-valued. In the case where Y is a subset of a topological vector space F, the concept of \(\mathcal{V}\)-upper semicontinuity (\(\mathcal{V}\) being the uniformity generated by a fundamental basis of neighborhoods of the origin in F) is known as Hausdorff upper semicontinuity.

  7. 7.

    KKM stands for Knaster, Kuratowski, and Mazurkiewicz. Using the Sperner Lemma, the three famous Polish topologists established in 1929 which became known as the KKM Lemma: if X consists of the set of vertices of a simplex in \({\mathbb{R}}^{n}\)  and \(\varGamma: X \rightrightarrows {R}^{n}\)  is a set-valued map with non-empty compact values verifying: \(\forall \{x_{1},\ldots,x_{k}\} \subset X,\) \(conv(\{x_{1},\ldots,x_{k}\}) \subset \bigcup _{i=1}^{k}\varGamma (x_{i}),\) then \(\bigcap _{x\in X}\varGamma (x)\neq \varnothing.\)

  8. 8.

    He provided the characterization: f is quasiconvex on a convex set X, if and only if \(f(\mu x_{1} + (1-\mu )x_{2}) \leq \max \{ f(x_{1}),f(x_{2})\}\) for all \(x_{1},x_{2} \in X\) and all \(\mu \in [0, 1].\)

  9. 9.

    A topological vector space E has separating dual if for each x ∈ E, x ≠ 0, there exists a bounded linear form  ∈ E , the topological dual of E, such that (x) ≠ 0. Locally convex topological vector spaces have separating duals. Sequence spaces p, 0 < p < 1, and Hardy spaces H p, 0 < p < 1, are instances of non-locally convex spaces with separating duals.

References

  1. Allen, G.: Variational inequalities, complementarity problems and duality theorems. J. math. Anal. Appl. 58, 1–10 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-El-Mechaiekh, H.: Note on a class of set-valued maps having continuous selections. In: Théra, M.A., Baillon, J.B. (eds.) Fixed Point Theory and Applications, Proceedings of the “Colloque International sur la Théorie du Point Fixe et Applications”, France, 1989. Pitman Research Notes in Math. Series, vol. 252, 1991, pp. 33–43

    MathSciNet  Google Scholar 

  3. Ben-El-Mechaiekh, H.: Continuous approximations of multifunctions, fixed points and coincidences. In: Florenzano, M., et al. (eds.) Approximation and Optimization in the Carribean II, Proceedings of the Second International Conference on Approximation and Optimization in the Carribean, pp. 69–97. Peter Lang Verlag, Frankfurt (1995)

    Google Scholar 

  4. Ben-El-Mechaiekh, H.: Spaces and maps approximation and fixed points. J. Comp. Appl. Math. 113, 283–308 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-El-Mechaiekh, H.: The Ky Fan fixed point theorem on star-shaped domains. Math. Rep. Acad. Sci. Can. 27, 97–100 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Ben-El-Mechaiekh, H.: On nonlinear inclusions in non-smooth domains. Arabian J. Math. 1, 395–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-El-Mechaiekh, H., Chebbi, S., Florenzano, M.: A generalized KKMF principle. J. Math. Anal. Appl. 309, 583–590 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-El-Mechaiekh, H., Chebbi, S., Florenzano, M., Llinares, J.V.: Abstract convexity and fixed points. J. Math. Anal. Appl. 222, 138–150 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-El-Mechaiekh, H., Deguire, P.: Approachability and fixed points for non-convex set-valued maps. J. Math. Anal. Appl. 170, 477–500 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-El-Mechaiekh, H., Dimand, R.: The von Neumann minimax principle revisited. In: Fixed Point Theory and Its Applications, Banach Center Publications, vol. 77, pp. 23–34. Inst. of Mathematics, Polish Academy of Sciences, Warszawa, Poland (2007)

    Google Scholar 

  11. Ben-El-Mechaiekh, H., Deguire, P., Granas, A.: Points fixes et coincidences pour les fonctions multivoques I (applications de Ky Fan). C. R. Acad. Sci. Paris 295, 337–340 (1982)

    MathSciNet  Google Scholar 

  12. Ben-El-Mechaiekh, H., Deguire, P., Granas, A.: Points fixes et coincidences pour les fonctions multivoques II (applications de type Φ et Φ ). C. R. Acad. Sci. Paris 295, 381–384 (1982)

    MathSciNet  Google Scholar 

  13. Ben-El-Mechaiekh, H., Deguire, P., Granas, A.: Points fixes et coincidences pour les fonctions multivoques III (applications de type M et M ). C. R. Acad. Sci. Paris 305, 381–384 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Ben-El-Mechaiekh, H., Idzik, A.: Ky Fan type coincidence theorems I. Bull. Pol. Acad. Sci. 122, 105–109 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Ben-El-Mechaiekh, H., Idzik, A.: A Leray–Schauder type theorem for approximable maps. Proc. Am. Math. Soc. 122, 105–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ben-El-Mechaiekh, H., Isac, G.: Some geometric solvability theorems in topological vector spaces. Bull. Kor. Math. Soc. 34, 273–285 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Ben-El-Mechaiekh, H., Kryszewski, W.: Equilibria for perturbations of upper semicontinuous set-valued maps by convex processes. Georgian J. Math. 3, 201–215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ben-El-Mechaiekh, H., Oudadess, M., Tounkara, J.: Approximation of multifunctions on uniform spaces and fixed points. In: Lau, A.T-L., Tweddle, I. (eds.) Topological Vector Spaces, Algebras and Related Areas. Pitman Research Notes in Mathematics Series, vol. 316, pp. 239–250. Longman, New York (1994)

    Google Scholar 

  19. Ben-El-Mechaiekh, H., Saidi, F.B.: On the continuous approximation of upper semicontinuous set-valued maps. Q & A in General Topology, in print

    Google Scholar 

  20. Bielwaski, R.: Simplicial convexity and its applications. J. Math. Anal. Appl. 127, 155–171 (1987)

    Article  MathSciNet  Google Scholar 

  21. Brézis, H.: Analyse fonctionelle, théorie et applications. Masson, Paris (1983)

    Google Scholar 

  22. Browder, F.E.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 283–301 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cellina, A.: A theorem on the approximation of compact multivalued mappings. Atti Accad. Naz. Lincei Rend. 8, 149–153 (1969)

    MathSciNet  Google Scholar 

  24. Chebbi, S., Gourdel, P., Hammami, H.: A generalization of Fan’s matching theorem. J. Fixed Point Theor. Appl. 9, 117–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cornet, B.: Paris avec handicap et théorème de surjectivité de correspondances. C. R. Acad. Sci. Paris 281, 479–482 (1975)

    MathSciNet  MATH  Google Scholar 

  26. Dugundji, J., Granas, A.: Fixed Point Theory, vol. 1. PWN—Polish Scientific Publishers, Warszawa (1982)

    Google Scholar 

  27. Engelking, R.: General Topology. PWN—-Polish Scientific Publishers, Warszawa (1977)

    Google Scholar 

  28. Fan, K.: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38, 121–126 (1952)

    Article  MATH  Google Scholar 

  29. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan, K.: Applications of a theorem concerning sets with convex sections. Math. Ann. 163, 189–203 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York, London (1972)

    Google Scholar 

  32. Fan, K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Florenzano, M.: L’équilibre économique général transitif et intransitif: problème d’existence. Monographie du séminaire d’économétrie. C. N. R. S., Paris (1981)

    Google Scholar 

  34. Husain, T., Tarafdar, E.: A selection and a fixed point theorem and an equilibrium point of an abstract economy. Int. J. Math. Math. Sci. 18, 179–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karamardian, S.: Generalized complementarity problems. J. Optim. Theor. Appl. 8, 161–168 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Granas, A.: On the Leray-Schauder alternative. Top. Meth. Nonlinear Anal. 2, 225–230 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Granas, A.: Méthodes topologiques en analyse convexe, Séminaire de mathématiques supérieures. Les Presses de l’Université de Montréal 110, 11–77 (1990)

    MathSciNet  Google Scholar 

  38. Granas, A., Liu, F.C.: Coincidences for set-valued maps and minimax inequalities. J. Math. Pure. Appl. 65, 119–148 (1986)

    MathSciNet  MATH  Google Scholar 

  39. Gwinner, J.: On fixed points and variational inequalities. A circular tour. Nonlinear Anal. 5, 565–583 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  40. Horvath, C.D.: Contractibility and generalized convexity. J. Math. Anal. Appl. 156, 341–357 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Isac, G.: On some generalization of Karamardian’s theorem on the complementarity problem. Boll. Unione Math. Ital. 7(2)-B, 323–332 (1988)

    Google Scholar 

  42. Isac, G.: Complementarity Problems. Lecture Notes in Mathematics, vol. 1528. Springer, Berlin (1992)

    Google Scholar 

  43. Lassonde, M.: On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl. 97, 151–201 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lin, L.-J., Ansari, Q.H., Wu, C.Y.: Geometric properties and coincidence theorems with applications to, generalized vector equilibrium problems. J. Optim. Theor. Appl. 117, 121–137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lin, L.-J., Wong, N.-C., Yu, Z.-T.: Continuous selections and fixed points of multi-valued mappings on noncompact or nonmetrizable spaces. Proc. Am. Math. Soc. 133, 3421–3427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, F.C.: On a form of KKM principle and SupInfSup inequalities of von Neumann and of Ky Fan type. J. Math. Anal. Appl. 155, 420–436 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Llinares, J.V.: Abstract convexity, some relations and applications. Optimization 51, 799–818 (2003)

    MathSciNet  Google Scholar 

  48. Michael, E.: Continuous selections I. Ann. Math. 63, 361–382 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  49. Milnor, J.: Analytic proofs of the “hairy ball theorem” and the Brouwer fixed point theorem. Am. Math. Mon. 85, 525–527 (1978)

    Article  MathSciNet  Google Scholar 

  50. Park, S.: Ninety years of the Brouwer fixed point theorem. Vietnam J. Math. 27, 187–222 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Park, S., Jeong, K.S.: Fixed point and non-retract theorems: classical circular tours. Taiwanese J. Math. 5, 97–108 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Rogers, C.A.: A less strange version of Milnor’s proof of Brouwer fixed point theorem. Am. Math. Mon. 8, 521–524 (1980)

    Google Scholar 

  53. Singbal, B.V.: Generalized form of Schauder-Tychnoff fixed-point principle. In: Bonsall, F.F. (ed.) Lectures on Some Fixed-point Theorems of Functional Analysis. Mimeographed Notes. TFIR, Bombay (1962)

    Google Scholar 

  54. Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  55. Stuckless, T.: Brouwer’s fixed point theorem: methods of proof and generalizations. M.Sc. Thesis, Simon Fraser University (2003)

    Google Scholar 

  56. Toussaint, S.: On the existence of equilibria in economies with infinitely many commodities and without ordered preferences. J. Econ. Theor. 33, 98–115 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. von Neumann, J.: Über ein Ökonomisches Gleichungssytem und eine Verallgemeinerung des Brouwerwschen Fixpunktsatzes. In: Menger, K. (ed.) Ergebnisse eines Mathematischen Kolloquium. Vienna. Translated by Morton G. as A Model of General Economic Equilibrium, Rev. Econ. Stud. 13, 1–9 (1945)

    Google Scholar 

  58. Yannelis, N.C., Prabakhar, N.D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hichem Ben-El-Mechaiekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ben-El-Mechaiekh, H. (2014). Some Fundamental Topological Fixed Point Theorems for Set-Valued Maps. In: Almezel, S., Ansari, Q., Khamsi, M. (eds) Topics in Fixed Point Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-01586-6_7

Download citation

Publish with us

Policies and ethics