Skip to main content

Empirical Study of Computational Intelligence Strategies for Biochemical Systems Modelling

  • Chapter
Nature Inspired Cooperative Strategies for Optimization (NICSO 2013)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 512))

Abstract

Modelling biochemical networks can be achieved by iteratively analyzing parts of the systems via top-down or bottom-up approaches. It is feasible to piece-wise model the biochemical networks from scratch by employing strategies able to assemble reusable components. In this paper, we investigate a set of strategies that can be employed in a bottom-up piece-wise modelling framework, to obtain synthetic models with similar behaviour to the target systems. A combination of evolution strategies and simulated annealing is employed to optimize the structure of the system and its kinetic rates. Simulation results of different variants of those computational methods on a standard signaling pathway show that it is feasible to obtain a tradeoff between the generation of desired behaviour and similar and alternative topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E., Korst, J., Michiels, W.: Simulated Annealing and Boltzmann Machines: a stochastic approach to combinatorial optimization and neural computing, pp. 188–202. Wiley (1989)

    Google Scholar 

  2. Baker, M.: Synthetic genomes: the next step for the synthetic genome. Nature 473, 403–408 (2011)

    Article  Google Scholar 

  3. Brazma, A., Jonassen, I., Vilo, J., Ukkonen, E.: Pattern discovery in biosequences. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 257–270. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Fogel, G., Corne, D.: Evolutionary Computation in Bioinformatics, pp. 256–276. Morgan Kaufmann (2003)

    Google Scholar 

  7. Gilbert, D., Westhead, D., Viksna, J.: Techniques for comparison, pattern matching and pattern discovery: from sequences to protein topology. In: Frasconi, P., Shamir, R. (eds.) Artificial Intelligence and Heuristic Methods in Bioinformatics, pp. 128–147. IOS Press (2003)

    Google Scholar 

  8. Gilbert, D., Heiner, M., Lehrack, S.: A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Lau, K.S., Juchheim, A.M., Cavaliere, K.R., Philips, S.R., Lauffenburger, D.A., Haigis, K.M.: In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-alpha-induced apoptosis and proliferation by MAPKs. Sci. Signal. 4(165), 16 (2011)

    Article  Google Scholar 

  10. Liu, X., Jiang, J., Ajayi, O., Gu, X., Gilbert, D.: BioNessie(G)- A Grid Enabled Biochemical Networks Simulation Environment. Studies in Health Technology and Informatics 138, 147–157 (2008)

    Google Scholar 

  11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  12. Rausanu, S., Grosan, C., Wu, Z., Parvu, O., Gilbert, D.: D., Evolving Biochemical Systems. In: IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico (2013)

    Google Scholar 

  13. Sakamoto, E., Iba, H.: Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Service Center, Piscataway (2000)

    Google Scholar 

  14. OShaughnessy, E.C., Palani, S., Collins, J.J., Sarkar, C.A.: Tunable signal processing in synthetic MAP kinase cascades. Cell 144(1), 119–131 (2011)

    Article  Google Scholar 

  15. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  16. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2009)

    Google Scholar 

  17. Yeung, K., Janosch, P., McFerran, B., Rose, D.W., Mischak, H., Sedivy, J.M., Kolch, W.: Mechanism of suppression of the Raf/MEK/Extracellular signal regulated kinase pathway by the Raf kinase inhibitor protein. Molecular and Cellular Biology 20(9), 3079–3085 (2000)

    Article  Google Scholar 

  18. Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K.D., Rose, D.W., Mischak, H., Sedivy, J.M., Kolch, W.: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. Nature 401, 173–177 (1999)

    Article  Google Scholar 

  19. Wu, Z.: A generic approach to behaviour-driven biochemical model construction, PhD Thesis, Brunel University (2013)

    Google Scholar 

  20. Wu, Z., Gao, Q., Gilbert, D.: Target Driven Biochemical Network Reconstruction Based on Petri nets and Simulated Annealing. In: Proceedings CMSB 2010 (8th International Conference on Computational Methods in Systems Biology), pp. 33–42. ACM Digital Library (2010)

    Google Scholar 

  21. Wu, Z., Yang, S., Gilbert, D.: A Hybrid Approach to Piecewise Modelling of Biochemical Systems. In: Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 519–528. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, Z., Grosan, C., Gilbert, D. (2014). Empirical Study of Computational Intelligence Strategies for Biochemical Systems Modelling. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01692-4_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01691-7

  • Online ISBN: 978-3-319-01692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics