Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 157))

Abstract

We discuss our current understanding of the discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions and provide a literature review on the subject.

AMS(MOS) subject classifications. 65N30, 35L15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To our credit, the ultraweak formulation was used at that point very formally, without a proper Functional Analysis setting which we established later in [24].

  2. 2.

    See [44], p. 205, and [39], Thm. 5.18.2.

  3. 3.

    For Hilbert space, the supremum is attained and can be replaced with maximum.

  4. 4.

    Functional \(I(\delta u_{h}):= (R_{V }^{-1}(Bu_{h} - l),R_{V }^{-1}B\delta u_{h})_{V }\) is antilinear. Real part of an antilinear functional vanishes if and only if the whole functional vanishes. This follows from the fact that, for any antilinear functional I(v),  Im I(v) = Re  I(iv). 

  5. 5.

    One might say, a generalized least squares method.

  6. 6.

    Note that the local problems are well defined by the assumption that the test norm is localizable.

  7. 7.

    Under the assumption that the traces spaces are equipped with minimum energy extension norms.

  8. 8.

    Neglecting the error due to the approximation of optimal test functions.

  9. 9.

    Actually, BC τ n  = 0 does produce a very weak boundary layer, hard to observe even with very accurate adaptive simulations, see [42].

  10. 10.

    Intuitively speaking, the weights are selected in such a way that they “kill” the effect of the boundary layers.

References

  1. I. Babuška. Error-bounds for finite element method. Numer. Math, 16, 1970/1971.

    Google Scholar 

  2. A.T. Barker, S.C. Brenner, E.-H. Park, and L.-Y. Sung. A one-level additive Schwarz preconditioner for a discontinuous Petrov–Galerkin method. Technical report, Dept. of Math., Luisiana State University, 2013. http://arxiv.org/abs/1212.2645.

    Google Scholar 

  3. P. Bochev and M.D. Gunzburger. Least-Squares Finite Element Methods, volume 166 of Applied Mathematical Sciences. Springer Verlag, 2009.

    Google Scholar 

  4. C.L. Bottasso, S. Micheletti, and R. Sacco. The discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg., 191: 3391–3409, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.L. Bottasso, S. Micheletti, and R. Sacco. A multiscale formulation of the discontinuous Petrov-Galerkin method for advective-diffusive problems. Comput. Methods Appl. Mech. Engrg., 194:2819–2838, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.H. Bramble, R.D. Lazarov, and J.E. Pasciak. A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comp, 66, 1997.

    Google Scholar 

  7. J. Bramwell, L. Demkowicz, J. Gopalakrishnan, and W. Qiu. A locking-free hp DPG method for linear elasticity with symmetric stresses. Num. Math., 2012. accepted.

    Google Scholar 

  8. T. Bui-Thanh, L. Demkowicz, and O. Ghattas. Constructively well-posed approximation methods with unity inf-sup and continuity. Math. Comp. accepted.

    Google Scholar 

  9. T. Bui-Thanh, L. Demkowicz, and O. Ghattas. A unified discontinuous Petrov-Galerkin Method and its analysis for Friedrichs’ systems. Technical Report 34, ICES, 2011. SIAM J. Num. Anal., revised version submitted.

    Google Scholar 

  10. T. Bui-Thanh, O. Ghattas, and L. Demkowicz. A relation between the discontinuous Petrov–Galerkin method and the Discontinuous Galerkin Method. Technical Report 45, ICES, 2011.

    Google Scholar 

  11. V.C. Calo, N.O. Collier, and A.H. Niemi. Analysis of the discontinuous Petrov–Galerkin method with optimal test functions for the Reissner–Mindlin plate bending model. In preparation.

    Google Scholar 

  12. P. Causin and R. Sacco. A discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal., 43, 2005.

    Google Scholar 

  13. P. Causin, R. Sacco, and C.L. Bottasso. Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems. M2AN Math. Model. Numer. Anal., 39:1087–1114, 2005.

    Google Scholar 

  14. O. Cessenat and B. Després. Application of an ultra weak variational formulation of elliptic pdes to the two-dimensional helmholtz problem. SIAM J. Numer. Anal., 35(1):255–299, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Chan and L. Demkowicz. Global properties of DPG test spaces for convection–diffusion problems. Technical report, ICES, 2013. In preparation.

    Google Scholar 

  16. J. Chan, L. Demkowicz, R. Moser, and N. Roberts. A class of Discontinuous Petrov–Galerkin methods. Part V: Solution of 1D Burgers and Navier–Stokes equations. Technical Report 25, ICES, 2010.

    Google Scholar 

  17. J. Chan, T. Ellis, L. Demkowicz, and N. Roberts. Element conservation properties in DPG method. Technical report, ICES, 2013. In preparation.

    Google Scholar 

  18. J. Chan, N. Heuer, Tan Bui-Thanh B., and L. Demkowicz. Robust DPG method for convection-dominated diffusion problems II: Natural inflow condition. Technical Report 21, ICES, June 2012. submitted to Comput. Math. Appl.

    Google Scholar 

  19. B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of Discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  20. Al Cohen, W. Dahmen, and G. Welper. Adaptivity and variational stabilization for convection-diffusion equations. Technical Report 323, Institut fuer Geometrie und Praktische Mathematik, 2011.

    Google Scholar 

  21. W. Dahmen, Ch. Huang, Ch. Schwab, and G. Welper. Adaptive Petrov Galerkin methods for first order transport equations. Technical Report 321, Institut fuer Geometrie und Praktische Mathematik, 2011.

    Google Scholar 

  22. L. Demkowicz. Computing with hp Finite Elements. I.One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, October 2006.

    Google Scholar 

  23. L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation. Comput. Methods Appl. Mech. Engrg., (23–24):1558–1572, 2010. see also ICES Report 2009–12.

    Google Scholar 

  24. L. Demkowicz and J. Gopalakrishnan. Analysis of the DPG method for the Poisson problem. SIAM J. Num. Anal., 49(5):1788–1809, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part II: Optimal test functions. Numer. Meth. Part. D. E., 27: 70–105, 2011. see also ICES Report 9/16.

    Google Scholar 

  26. L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli. Wavenumber explicit analysis for a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Engrg., 213–216:126–138, 2012.

    Article  MathSciNet  Google Scholar 

  27. L. Demkowicz, J. Gopalakrishnan, and A. Niemi. A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity. Appl. Numer. Math., 62(4):396–427, 2012. see also ICES Report 2010/1.

    Google Scholar 

  28. L. Demkowicz, J. Gopalakrishnan, and J. Wang. A primal DPG method with no numerical traces. 2013. In preparation.

    Google Scholar 

  29. L. Demkowicz and N. Heuer. Robust DPG method for convection-dominated diffusion problems. Technical report, ICES, 2011. SIAM J. Num. Anal., in review.

    Google Scholar 

  30. L. Demkowicz and J. Li. Numerical simulations of cloaking problems using a DPG method. Comp. Mech., 2012. In print.

    Google Scholar 

  31. L. Demkowicz and J. T. Oden. An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. Journal of Computational Physics, 68(1):188–273, 1986.

    Article  MathSciNet  Google Scholar 

  32. L. Demkowicz and J. T. Oden. An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables. Comput. Methods Appl. Mech. Engrg., 55(1–2):65–87, 1986.

    MathSciNet  Google Scholar 

  33. J. Gopalakrishnan and W. Qiu. An analysis of the practical DPG method. Math. Comp., 2012. accepted.

    Google Scholar 

  34. D. Moro, N.C. Nguyen, and J. Peraire. A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws. Int.J. Num. Meth. Eng., 2011. in print.

    Google Scholar 

  35. A.H. Niemi, J.A. Bramwell, and L.F. Demkowicz. Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics. Comput. Methods Appl. Mech. Engrg., 200:1291–1300, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  36. A.H. Niemi, N.O. Collier, and V.M. Calo. Automatically stabilized discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm. 2011. In preparation.

    Google Scholar 

  37. A.H. Niemi, N.O. Collier, and V.M. Calo. Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems. Journal of Computational Science, 2011. In press.

    Google Scholar 

  38. J.T. Oden, L. Demkowicz, T. Strouboulis, and Ph. Devloo. Accuracy Estimates and Adaptive Refinements in Finite Element Computations, chapter Adaptive Methods for Problems in Solid and Fluid Mechanics. John Wiley and Sons Ltd., London, 1986.

    Google Scholar 

  39. J.T. Oden and L.F. Demkowicz. Applied Functional Analysis for Science and Engineering. Chapman & Hall/CRC Press, Boca Raton, 2010. Second edition.

    Google Scholar 

  40. N. Roberts, Tan Bui-Thanh B., and L. Demkowicz. The DPG method for the Stokes problem. Technical Report 22, ICES, June 2012. submitted to Comput. Math. Appl.

    Google Scholar 

  41. N.V. Roberts, D. Ridzal, P.B. Bochev, and L. Demkowicz. A toolbox for a class of discontinuous Petrov-Galerkin methods using Trilinos. Technical Report SAND2011-6678, Sandia National Laboratories, 2011.

    Google Scholar 

  42. H. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Springer, 2008.

    Google Scholar 

  43. Ch. Wieners and B. Wohlmuth. Robust operator estimates. Technical report, Oberwolfach Reports, 2013.

    Google Scholar 

  44. K. Yosida. Functional Analysis. Springer-Verlag, New York, 4 edition, 1974.

    Book  MATH  Google Scholar 

  45. J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. Calo. A class of discontinuous Petrov-Galerkin methods. Part IV: Wave propagation problems. J. Comp. Phys., 230:2406–2432, 2011.

    Google Scholar 

Download references

Acknowledgements

The work of the author Leszek F. Demkowicz was supported by the Department of Energy under Award Number DE-FC52-08NA28615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek F. Demkowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demkowicz, L.F., Gopalakrishnan, J. (2014). An Overview of the Discontinuous Petrov Galerkin Method. In: Feng, X., Karakashian, O., Xing, Y. (eds) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-01818-8_6

Download citation

Publish with us

Policies and ethics